In which age range does the rate of decline in muscle mass and strength tend to accelerate quizlet?

1. Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M. Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports 20: 49–64, 2010. doi: 10.1111/j.1600-0838.2009.01084.x. [PubMed] [CrossRef] [Google Scholar]

2. Abou-Khalil R, Mounier R, Chazaud B. Regulation of myogenic stem cell behavior by vessel cells: the “ménage à trois” of satellite cells, periendothelial cells and endothelial cells. Cell Cycle 9: 892–896, 2010. doi: 10.4161/cc.9.5.10851. [PubMed] [CrossRef] [Google Scholar]

3. Acakpo-Satchivi LJ, Edelmann W, Sartorius C, Lu BD, Wahr PA, Watkins SC, Metzger JM, Leinwand L, Kucherlapati R. Growth and muscle defects in mice lacking adult myosin heavy chain genes. J Cell Biol 139: 1219–1229, 1997. doi: 10.1083/jcb.139.5.1219. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Acín-Pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA. Respiratory active mitochondrial supercomplexes. Mol Cell 32: 529–539, 2008. doi: 10.1016/j.molcel.2008.10.021. [PubMed] [CrossRef] [Google Scholar]

5. Acosta MJ, Vazquez Fonseca L, Desbats MA, Cerqua C, Zordan R, Trevisson E, Salviati L. Coenzyme Q biosynthesis in health and disease. Biochim Biophys Acta 1857: 1079–1085, 2016. doi: 10.1016/j.bbabio.2016.03.036. [PubMed] [CrossRef] [Google Scholar]

6. Agre JC, Rodríquez AA, Tafel JA. Late effects of polio: critical review of the literature on neuromuscular function. Arch Phys Med Rehabil 72: 923–931, 1991. doi: 10.1016/0003-9993(91)90013-9. [PubMed] [CrossRef] [Google Scholar]

7. Aguennouz M, Vita GL, Messina S, Cama A, Lanzano N, Ciranni A, Rodolico C, Di Giorgio RM, Vita G. Telomere shortening is associated to TRF1 and PARP1 overexpression in Duchenne muscular dystrophy. Neurobiol Aging 32: 2190–2197, 2011. doi: 10.1016/j.neurobiolaging.2010.01.008. [PubMed] [CrossRef] [Google Scholar]

8. Ahmed SK, Egginton S, Jakeman PM, Mannion AF, Ross HF. Is human skeletal muscle capillary supply modelled according to fibre size or fibre type? Exp Physiol 82: 231–234, 1997. doi: 10.1113/expphysiol.1997.sp004012. [PubMed] [CrossRef] [Google Scholar]

9. Akaaboune M, Culican SM, Turney SG, Lichtman JW. Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo. Science 286: 503–507, 1999. doi: 10.1126/science.286.5439.503. [PubMed] [CrossRef] [Google Scholar]

10. Akasaki Y, Ouchi N, Izumiya Y, Bernardo BL, Lebrasseur NK, Walsh K. Glycolytic fast-twitch muscle fiber restoration counters adverse age-related changes in body composition and metabolism. Aging Cell 13: 80–91, 2014. doi: 10.1111/acel.12153. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Akoumianaki E, Lyazidi A, Rey N, Matamis D, Perez-Martinez N, Giraud R, Mancebo J, Brochard L, Richard JM. Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest 143: 927–938, 2013. doi: 10.1378/chest.12-1817. [PubMed] [CrossRef] [Google Scholar]

12. Allen DL, Roy RR, Edgerton VR. Myonuclear domains in muscle adaptation and disease. Muscle Nerve 22: 1350–1360, 1999. doi: 10.1002/(SICI)1097-4598(199910)22:10<1350::AID-MUS3>3.0.CO;2-8. [PubMed] [CrossRef] [Google Scholar]

13. Allen DL, Yasui W, Tanaka T, Ohira Y, Nagaoka S, Sekiguchi C, Hinds WE, Roy RR, Edgerton VR. Myonuclear number and myosin heavy chain expression in rat soleus single muscle fibers after spaceflight. J Appl Physiol (1985) 81: 145–151, 1996. doi: 10.1152/jappl.1996.81.1.145. [PubMed] [CrossRef] [Google Scholar]

14. Almada AE, Wagers AJ. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 17: 267–279, 2016. doi: 10.1038/nrm.2016.7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Alnaqeeb MA, Al Zaid NS, Goldspink G. Connective tissue changes and physical properties of developing and ageing skeletal muscle. J Anat 139: 677–689, 1984. [PMC free article] [PubMed] [Google Scholar]

16. Altun M, Besche HC, Overkleeft HS, Piccirillo R, Edelmann MJ, Kessler BM, Goldberg AL, Ulfhake B. Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J Biol Chem 285: 39597–39608, 2010. doi: 10.1074/jbc.M110.129718. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Alway SE, Degens H, Krishnamurthy G, Chaudhrai A. Denervation stimulates apoptosis but not Id2 expression in hindlimb muscles of aged rats. J Gerontol A Biol Sci Med Sci 58: 687–697, 2003. doi: 10.1093/gerona/58.8.B687. [PubMed] [CrossRef] [Google Scholar]

18. Amati-Bonneau P, Valentino ML, Reynier P, Gallardo ME, Bornstein B, Boissière A, Campos Y, Rivera H, de la Aleja JG, Carroccia R, Iommarini L, Labauge P, Figarella-Branger D, Marcorelles P, Furby A, Beauvais K, Letournel F, Liguori R, La Morgia C, Montagna P, Liguori M, Zanna C, Rugolo M, Cossarizza A, Wissinger B, Verny C, Schwarzenbacher R, Martín MA, Arenas J, Ayuso C, Garesse R, Lenaers G, Bonneau D, Carelli V. OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes. Brain 131: 338–351, 2008. doi: 10.1093/brain/awm298. [PubMed] [CrossRef] [Google Scholar]

19. Anderson MJ, Cohen MW. Fluorescent staining of acetylcholine receptors in vertebrate skeletal muscle. J Physiol 237: 385–400, 1974. doi: 10.1113/jphysiol.1974.sp010487. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UC, Podowski RM, Näslund AK, Eriksson AS, Winkler HH, Kurland CG. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140, 1998. doi: 10.1038/24094. [PubMed] [CrossRef] [Google Scholar]

21. Andreu AL, Hanna MG, Reichmann H, Bruno C, Penn AS, Tanji K, Pallotti F, Iwata S, Bonilla E, Lach B, Morgan-Hughes J, DiMauro S. Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med 341: 1037–1044, 1999. doi: 10.1056/NEJM199909303411404. [PubMed] [CrossRef] [Google Scholar]

22. Ansved T, Edström L. Effects of age on fibre structure, ultrastructure and expression of desmin and spectrin in fast- and slow-twitch rat muscles. J Anat 174: 61–79, 1991. [PMC free article] [PubMed] [Google Scholar]

23. Ansved T, Larsson L. Effects of ageing on enzyme-histochemical, morphometrical and contractile properties of the soleus muscle in the rat. J Neurol Sci 93: 105–124, 1989. doi: 10.1016/0022-510X(89)90165-2. [PubMed] [CrossRef] [Google Scholar]

24. Ansved T, Larsson L. Quantitative and qualitative morphological properties of the soleus motor nerve and the L5 ventral root in young and old rats. Relation to the number of soleus muscle fibers. J Neurol Sci 96: 269–282, 1990. doi: 10.1016/0022-510X(90)90138-D. [PubMed] [CrossRef] [Google Scholar]

25. Ansved T, Larsson L.. Histochemical properties of aging rat skeletal muscle. In: Pathobiology of the Aging Rat. Washington, DC: Intl Life Sciences Inst, 1994, p. 521–534. [Google Scholar]

26. Ansved T, Wallner P, Larsson L. Spatial distribution of motor unit fibres in fast- and slow-twitch rat muscles with special reference to age. Acta Physiol Scand 143: 345–354, 1991. doi: 10.1111/j.1748-1716.1991.tb09242.x. [PubMed] [CrossRef] [Google Scholar]

27. Anzil AP, Bieser A, Wernig A. Light and electron microscopic identification of nerve terminal sprouting and retraction in normal adult frog muscle. J Physiol 350: 393–399, 1984. doi: 10.1113/jphysiol.1984.sp015207. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451: 1008–1012, 2008. doi: 10.1038/nature06613. [PubMed] [CrossRef] [Google Scholar]

29. Arany Z, Lebrasseur N, Morris C, Smith E, Yang W, Ma Y, Chin S, Spiegelman BM. The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab 5: 35–46, 2007. doi: 10.1016/j.cmet.2006.12.003. [PubMed] [CrossRef] [Google Scholar]

30. Armstrong RB, Ogilvie RW, Schwane JA. Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol Respir Environ Exerc Physiol 54: 80–93, 1983. [PubMed] [Google Scholar]

31. Asanuma M, Miyazaki I. Nonsteroidal anti-inflammatory drugs in experimental parkinsonian models and Parkinson’s disease. Curr Pharm Des 14: 1428–1434, 2008. doi: 10.2174/138161208784480153. [PubMed] [CrossRef] [Google Scholar]

32. Ash CE, Merry BJ. The molecular basis by which dietary restricted feeding reduces mitochondrial reactive oxygen species generation. Mech Ageing Dev 132: 43–54, 2011. doi: 10.1016/j.mad.2010.12.001. [PubMed] [CrossRef] [Google Scholar]

33. Atkinson RA, Srinivas-Shankar U, Roberts SA, Connolly MJ, Adams JE, Oldham JA, Wu FC, Seynnes OR, Stewart CE, Maganaris CN, Narici MV. Effects of testosterone on skeletal muscle architecture in intermediate-frail and frail elderly men. J Gerontol A Biol Sci Med Sci 65: 1215–1219, 2010. doi: 10.1093/gerona/glq118. [PubMed] [CrossRef] [Google Scholar]

34. Ausoni S, Gorza L, Schiaffino S, Gundersen K, Lømo T. Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J Neurosci 10: 153–160, 1990. doi: 10.1523/JNEUROSCI.10-01-00153.1990. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Ausoni S, Gorza L, Schiaffino S, Gundersen K, Lømo T. Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J Neurosci 10: 153–160, 1990. doi: 10.1523/JNEUROSCI.10-01-00153.1990. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Baehr LM, West DW, Marcotte G, Marshall AG, De Sousa LG, Baar K, Bodine SC. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis. Aging (Albany NY) 8: 127–146, 2016. doi: 10.18632/aging.100879. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Baker BA, Cutlip RG. Skeletal muscle injury versus adaptation with aging: novel insights on perplexing paradigms. Exerc Sport Sci Rev 38: 10–16, 2010. doi: 10.1097/JES.0b013e3181c5cd7c. [PubMed] [CrossRef] [Google Scholar]

37a. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM. Clearance of p16Ink4a-positive senescent cells delays aging-associated disorders. Nature 479: 232–236, 2011. [PMC free article] [PubMed] [Google Scholar]

38. Balagopal P, Rooyackers OE, Adey DB, Ades PA, Nair KS. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. Am J Physiol 273: E790–E800, 1997. [PubMed] [Google Scholar]

39. Balagopal P, Rooyackers OE, Adey DB, Ades PA, Nair KS. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. Am J Physiol 273: E790–E800, 1997. [PubMed] [Google Scholar]

40. Balagopal P, Schimke JC, Ades P, Adey D, Nair KS. Age effect on transcript levels and synthesis rate of muscle MHC and response to resistance exercise. Am J Physiol Endocrinol Metab 280: E203–E208, 2001. doi: 10.1152/ajpendo.2001.280.2.E203. [PubMed] [CrossRef] [Google Scholar]

41. Balice-Gordon RJ. Age-related changes in neuromuscular innervation. Muscle Nerve Suppl 20, Suppl 5: S83–S87, 1997. doi: 10.1002/(SICI)1097-4598(1997)5+<83::AID-MUS20>3.0.CO;2-Z. [PubMed] [CrossRef] [Google Scholar]

42. Balice-Gordon RJ, Breedlove SM, Bernstein S, Lichtman JW. Neuromuscular junctions shrink and expand as muscle fiber size is manipulated: in vivo observations in the androgen-sensitive bulbocavernosus muscle of mice. J Neurosci 10: 2660–2671, 1990. doi: 10.1523/JNEUROSCI.10-08-02660.1990. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Balice-Gordon RJ, Lichtman JW. In vivo observations of pre- and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions. J Neurosci 13: 834–855, 1993. doi: 10.1523/JNEUROSCI.13-02-00834.1993. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Balice-Gordon RJ, Lichtman JW. In vivo visualization of the growth of pre- and postsynaptic elements of neuromuscular junctions in the mouse. J Neurosci 10: 894–908, 1990. doi: 10.1523/JNEUROSCI.10-03-00894.1990. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Balice-Gordon RJ, Lichtman JW. Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372: 519–524, 1994. doi: 10.1038/372519a0. [PubMed] [CrossRef] [Google Scholar]

46. Ballak SB, Busé-Pot T, Harding PJ, Yap MH, Deldicque L, de Haan A, Jaspers RT, Degens H. Blunted angiogenesis and hypertrophy are associated with increased fatigue resistance and unchanged aerobic capacity in old overloaded mouse muscle. Age (Dordr) 38: 39, 2016. doi: 10.1007/s11357-016-9894-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Ballak SB, Degens H, de Haan A, Jaspers RT. Aging related changes in determinants of muscle force generating capacity: a comparison of muscle aging in men and male rodents. Ageing Res Rev 14: 43–55, 2014. doi: 10.1016/j.arr.2014.01.005. [PubMed] [CrossRef] [Google Scholar]

48. Ballak SB, Jaspers RT, Deldicque L, Chalil S, Peters EL, de Haan A, Degens H. Blunted hypertrophic response in old mouse muscle is associated with a lower satellite cell density and is not alleviated by resveratrol. Exp Gerontol 62: 23–31, 2015. doi: 10.1016/j.exger.2014.12.020. [PubMed] [CrossRef] [Google Scholar]

49. Bandy B, Davison AJ. Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med 8: 523–539, 1990. doi: 10.1016/0891-5849(90)90152-9. [PubMed] [CrossRef] [Google Scholar]

50. Banker BQ, Kelly SS, Robbins N. Neuromuscular transmission and correlative morphology in young and old mice. J Physiol 339: 355–377, 1983. doi: 10.1113/jphysiol.1983.sp014721. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Bannister RA, Pessah IN, Beam KG. The skeletal L-type Ca(2+) current is a major contributor to excitation-coupled Ca(2+) entry. J Gen Physiol 133: 79–91, 2009. doi: 10.1085/jgp.200810105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Barik A, Lu Y, Sathyamurthy A, Bowman A, Shen C, Li L, Xiong WC, Mei L. LRP4 is critical for neuromuscular junction maintenance. J Neurosci 34: 13892–13905, 2014. doi: 10.1523/JNEUROSCI.1733-14.2014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Barker D, Ip MC. Sprouting and degeneration of mammalian motor axons in normal and de-afferentated skeletal muscle. Proc R Soc Lond B Biol Sci 163: 538–554, 1966. doi: 10.1098/rspb.1966.0008. [PubMed] [CrossRef] [Google Scholar]

54. Barrientos A, Casademont J, Rötig A, Miró O, Urbano-Márquez A, Rustin P, Cardellach F. Absence of relationship between the level of electron transport chain activities and aging in human skeletal muscle. Biochem Biophys Res Commun 229: 536–539, 1996. doi: 10.1006/bbrc.1996.1839. [PubMed] [CrossRef] [Google Scholar]

55. Barrientos A, Fontanesi F, Díaz F. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays. Curr Protoc Hum Genet Chapter 19: 3, 2009. [PMC free article] [PubMed] [Google Scholar]

56. Bass A, Gutmann E, Hanzlíková V. Biochemical and histochemical changes in energy supply enzyme pattern of muscles of the rat during old age. Gerontologia 21: 31–45, 1975. doi: 10.1159/000212028. [PubMed] [CrossRef] [Google Scholar]

57. Bassey EJ, Bendall MJ, Pearson M. Muscle strength in the triceps surae and objectively measured customary walking activity in men and women over 65 years of age. Clin Sci (Lond) 74: 85–89, 1988. doi: 10.1042/cs0740085. [PubMed] [CrossRef] [Google Scholar]

58. Bassey EJ, Fiatarone MA, O’Neill EF, Kelly M, Evans WJ, Lipsitz LA. Leg extensor power and functional performance in very old men and women. Clin Sci (Lond) 82: 321–327, 1992. doi: 10.1042/cs0820321. [PubMed] [CrossRef] [Google Scholar]

59. Baumer A, Zhang C, Linnane AW, Nagley P. Age-related human mtDNA deletions: a heterogeneous set of deletions arising at a single pair of directly repeated sequences. Am J Hum Genet 54: 618–630, 1994. [PMC free article] [PubMed] [Google Scholar]

60. Bautmans I, Onyema O, Van Puyvelde K, Pleck S, Mets T. Grip work estimation during sustained maximal contraction: validity and relationship with dependency and inflammation in elderly persons. J Nutr Health Aging 15: 731–736, 2011. doi: 10.1007/s12603-010-0317-1. [PubMed] [CrossRef] [Google Scholar]

61. Beach RK, Kostyo JL. Effect of growth hormone on the DNA content of muscles of young hypophysectomized rats. Endocrinology 82: 882–884, 1968. doi: 10.1210/endo-82-4-882. [PubMed] [CrossRef] [Google Scholar]

62. Beal MF, Matthews RT. Coenzyme Q10 in the central nervous system and its potential usefulness in the treatment of neurodegenerative diseases. Mol Aspects Med 18, Suppl: S169–S179, 1997. doi: 10.1016/S0098-2997(97)00024-1. [PubMed] [CrossRef] [Google Scholar]

63. Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA, Recknor CP, Hochberg MC, Ferrari SL, Blain H, Binder EF, Rolland Y, Poiraudeau S, Benson CT, Myers SL, Hu L, Ahmad QI, Pacuch KR, Gomez EV, Benichou O; STEADY Group . Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 3: 948–957, 2015. doi: 10.1016/S2213-8587(15)00298-3. [PubMed] [CrossRef] [Google Scholar]

64. Beharry AW, Sandesara PB, Roberts BM, Ferreira LF, Senf SM, Judge AR. HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. J Cell Sci 127: 1441–1453, 2014. doi: 10.1242/jcs.136390. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Bekedam MA, van Beek-Harmsen BJ, Boonstra A, van Mechelen W, Visser FC, van der Laarse WJ. Maximum rate of oxygen consumption related to succinate dehydrogenase activity in skeletal muscle fibres of chronic heart failure patients and controls. Clin Physiol Funct Imaging 23: 337–343, 2003. doi: 10.1046/j.1475-0961.2003.00517.x. [PubMed] [CrossRef] [Google Scholar]

66. Belanger AY, McComas AJ, Elder GB. Physiological properties of two antagonist human muscle groups. Eur J Appl Physiol Occup Physiol 51: 381–393, 1983. doi: 10.1007/BF00429075. [PubMed] [CrossRef] [Google Scholar]

67. Beltran Valls MR, Wilkinson DJ, Narici MV, Smith K, Phillips BE, Caporossi D, Atherton PJ. Protein carbonylation and heat shock proteins in human skeletal muscle: relationships to age and sarcopenia. J Gerontol A Biol Sci Med Sci 70: 174–181, 2015. doi: 10.1093/gerona/glu007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Berg HE, Dudley GA, Häggmark T, Ohlsén H, Tesch PA. Effects of lower limb unloading on skeletal muscle mass and function in humans. J Appl Physiol (1985) 70: 1882–1885, 1991. doi: 10.1152/jappl.1991.70.4.1882. [PubMed] [CrossRef] [Google Scholar]

69. Berg HE, Larsson L, Tesch PA. Lower limb skeletal muscle function after 6 wk of bed rest. J Appl Physiol (1985) 82: 182–188, 1997. doi: 10.1152/jappl.1997.82.1.182. [PubMed] [CrossRef] [Google Scholar]

70. Berger A, Mayr JA, Meierhofer D, Fötschl U, Bittner R, Budka H, Grethen C, Huemer M, Kofler B, Sperl W. Severe depletion of mitochondrial DNA in spinal muscular atrophy. Acta Neuropathol 105: 245–251, 2003. [PubMed] [Google Scholar]

71. Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20: 265–271, 2014. doi: 10.1038/nm.3465. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Berthelot G, Len S, Hellard P, Tafflet M, Guillaume M, Vollmer JC, Gager B, Quinquis L, Marc A, Toussaint JF. Exponential growth combined with exponential decline explains lifetime performance evolution in individual and human species. Age (Dordr) 34: 1001–1009, 2012. doi: 10.1007/s11357-011-9274-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Bhuiyan MS, Pattison JS, Osinska H, James J, Gulick J, McLendon PM, Hill JA, Sadoshima J, Robbins J. Enhanced autophagy ameliorates cardiac proteinopathy. J Clin Invest 123: 5284–5297, 2013. doi: 10.1172/JCI70877. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Billia F, Hauck L, Konecny F, Rao V, Shen J, Mak TW. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc Natl Acad Sci USA 108: 9572–9577, 2011. doi: 10.1073/pnas.1106291108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Bishop DL, Misgeld T, Walsh MK, Gan WB, Lichtman JW. Axon branch removal at developing synapses by axosome shedding. Neuron 44: 651–661, 2004. doi: 10.1016/j.neuron.2004.10.026. [PubMed] [CrossRef] [Google Scholar]

76. Blake AJ, Morgan K, Bendall MJ, Dallosso H, Ebrahim SB, Arie TH, Fentem PH, Bassey EJ. Falls by elderly people at home: prevalence and associated factors. Age Ageing 17: 365–372, 1988. doi: 10.1093/ageing/17.6.365. [PubMed] [CrossRef] [Google Scholar]

77. Blau HM, Webster C, Pavlath GK. Defective myoblasts identified in Duchenne muscular dystrophy. Proc Natl Acad Sci USA 80: 4856–4860, 1983. doi: 10.1073/pnas.80.15.4856. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Blough ER, Linderman JK. Lack of skeletal muscle hypertrophy in very aged male Fischer 344 x Brown Norway rats. J Appl Physiol (1985) 88: 1265–1270, 2000. doi: 10.1152/jappl.2000.88.4.1265. [PubMed] [CrossRef] [Google Scholar]

79. Bodine SC, Garfinkel A, Roy RR, Edgerton VR. Spatial distribution of motor unit fibers in the cat soleus and tibialis anterior muscles: local interactions. J Neurosci 8: 2142–2152, 1988. doi: 10.1523/JNEUROSCI.08-06-02142.1988. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294: 1704–1708, 2001. doi: 10.1126/science.1065874. [PubMed] [CrossRef] [Google Scholar]

81. Boffoli D, Scacco SC, Vergari R, Solarino G, Santacroce G, Papa S. Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1226: 73–82, 1994. doi: 10.1016/0925-4439(94)90061-2. [PubMed] [CrossRef] [Google Scholar]

82. Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6: 25–39, 2013. doi: 10.1242/dmm.010389. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Booth FW, Criswell DS. Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures. Int J Sports Med 18, Suppl 4: S265–S269, 1997. doi: 10.1055/s-2007-972723. [PubMed] [CrossRef] [Google Scholar]

84. Booth FW, Kirby CR. Changes in skeletal muscle gene expression consequent to altered weight bearing. Am J Physiol 262: R329–R332, 1992. [PubMed] [Google Scholar]

85. Boreham CA, Watt PW, Williams PE, Merry BJ, Goldspink G, Goldspink DF. Effects of ageing and chronic dietary restriction on the morphology of fast and slow muscles of the rat. J Anat 157: 111–125, 1988. [PMC free article] [PubMed] [Google Scholar]

86. Borg J, Borg K, Edström L, Grimby L, Henriksson J, Larsson L, Tollbäck A. Motoneuron and muscle fiber properties of remaining motor units in weak tibialis anterior muscles in prior polio. Ann N Y Acad Sci 753, 1 The Post-Poli: 335–342, 1995. doi: 10.1111/j.1749-6632.1995.tb27559.x. [PubMed] [CrossRef] [Google Scholar]

87. Borg K, Borg J, Edström L, Grimby L. Effects of excessive use of remaining muscle fibers in prior polio and LV lesion. Muscle Nerve 11: 1219–1230, 1988. doi: 10.1002/mus.880111206. [PubMed] [CrossRef] [Google Scholar]

88. Borg K, Edström L. Prior poliomyelitis: an immunohistochemical study of cytoskeletal proteins and a marker for muscle fibre regeneration in relation to usage of remaining motor units. Acta Neurol Scand 87: 128–132, 1993. doi: 10.1111/j.1600-0404.1993.tb04091.x. [PubMed] [CrossRef] [Google Scholar]

89. Borgesius NZ, de Waard MC, van der Pluijm I, Omrani A, Zondag GC, van der Horst GT, Melton DW, Hoeijmakers JH, Jaarsma D, Elgersma Y. Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair. J Neurosci 31: 12543–12553, 2011. doi: 10.1523/JNEUROSCI.1589-11.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Bossola M, Pacelli F, Costelli P, Tortorelli A, Rosa F, Doglietto GB. Proteasome activities in the rectus abdominis muscle of young and older individuals. Biogerontology 9: 261–268, 2008. doi: 10.1007/s10522-008-9135-9. [PubMed] [CrossRef] [Google Scholar]

91. Bosutti A, Egginton S, Barnouin Y, Ganse B, Rittweger J, Degens H. Local capillary supply in muscle is not determined by local oxidative capacity. J Exp Biol 218: 3377–3380, 2015. doi: 10.1242/jeb.126664. [PubMed] [CrossRef] [Google Scholar]

92. Bota DA, Davies KJ. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4: 674–680, 2002. doi: 10.1038/ncb836. [PubMed] [CrossRef] [Google Scholar]

93. Bota DA, Van Remmen H, Davies KJ. Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett 532: 103–106, 2002. doi: 10.1016/S0014-5793(02)03638-4. [PubMed] [CrossRef] [Google Scholar]

94. Bottinelli R, Betto R, Schiaffino S, Reggiani C. Unloaded shortening velocity and myosin heavy chain and alkali light chain isoform composition in rat skeletal muscle fibres. J Physiol 478: 341–349, 1994. doi: 10.1113/jphysiol.1994.sp020254. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Brack AS, Bildsoe H, Hughes SM. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J Cell Sci 118: 4813–4821, 2005. doi: 10.1242/jcs.02602. [PubMed] [CrossRef] [Google Scholar]

96. Brack AS, Muñoz-Cánoves P. The ins and outs of muscle stem cell aging. Skelet Muscle 6: 1, 2016. doi: 10.1186/s13395-016-0072-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Bradlee ML, Mustafa J, Singer MR, Moore LL. High-Protein Foods and Physical Activity Protect Against Age-Related Muscle Loss and Functional Decline. J Gerontol A Biol Sci Med Sci 73: 88–94, 2017. doi: 10.1093/gerona/glx070. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Brandstater ME, Lambert EH. A histochemical study of the spatial arrangement of muscle fibers in single motor units within rat tibialis anterior motor units. Bull Am Assoc EMG Electrodiag 82: 15–16, 1969. [Google Scholar]

99. Brandstater ME, Lambert EH. Motor unit anatomy. Type and spatial arrangement of muscle fibers. Basel: Karger, 1973, p. 14–22. [Google Scholar]

100. Brierley EJ, Johnson MA, James OF, Turnbull DM. Effects of physical activity and age on mitochondrial function. QJM 89: 251–258, 1996. doi: 10.1093/qjmed/89.4.251. [PubMed] [CrossRef] [Google Scholar]

101. Brill MS, Lichtman JW, Thompson W, Zuo Y, Misgeld T. Spatial constraints dictate glial territories at murine neuromuscular junctions. J Cell Biol 195: 293–305, 2011. doi: 10.1083/jcb.201108005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Brocca L, McPhee JS, Longa E, Canepari M, Seynnes O, De Vito G, Pellegrino MA, Narici M, Bottinelli R. Structure and function of human muscle fibres and muscle proteome in physically active older men. J Physiol 595: 4823–4844, 2017. doi: 10.1113/JP274148. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Brocca L, Toniolo L, Reggiani C, Bottinelli R, Sandri M, Pellegrino MA. FoxO-dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension. J Physiol 595: 1143–1158, 2017. doi: 10.1113/JP273097. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Brody IA. Regulation of isometric contraction in skeletal muscle. Exp Neurol 50: 673–683, 1976. doi: 10.1016/0014-4886(76)90036-4. [PubMed] [CrossRef] [Google Scholar]

105. Bromley DB. The Psychology of Human Ageing. England: Pinguin Books Ltd Middlesex, 1971. [Google Scholar]

106. Brooks NE, Schuenke MD, Hikida RS. Ageing influences myonuclear domain size differently in fast and slow skeletal muscle of rats. Acta Physiol (Oxf) 197: 55–63, 2009. doi: 10.1111/j.1748-1716.2009.01983.x. [PubMed] [CrossRef] [Google Scholar]

107. Brooks SV, Faulkner JA. Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404: 71–82, 1988. doi: 10.1113/jphysiol.1988.sp017279. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Brooks SV, Faulkner JA. Contraction-induced injury: recovery of skeletal muscles in young and old mice. Am J Physiol 258: C436–C442, 1990. doi: 10.1152/ajpcell.1990.258.3.C436. [PubMed] [CrossRef] [Google Scholar]

109. Brooks SV, Faulkner JA. Isometric, shortening, and lengthening contractions of muscle fiber segments from adult and old mice. Am J Physiol 267: C507–C513, 1994. doi: 10.1152/ajpcell.1994.267.2.C507. [PubMed] [CrossRef] [Google Scholar]

110. Brooks SV, Faulkner JA. Skeletal muscle weakness in old age: underlying mechanisms. Med Sci Sports Exerc 26: 432–439, 1994. doi: 10.1249/00005768-199404000-00006. [PubMed] [CrossRef] [Google Scholar]

111. Brown M. Change in fibre size, not number, in ageing skeletal muscle. Age Ageing 16: 244–248, 1987. doi: 10.1093/ageing/16.4.244. [PubMed] [CrossRef] [Google Scholar]

112. Brown M, Ross TP, Holloszy JO. Effects of ageing and exercise on soleus and extensor digitorum longus muscles of female rats. Mech Ageing Dev 63: 69–77, 1992. doi: 10.1016/0047-6374(92)90017-8. [PubMed] [CrossRef] [Google Scholar]

113. Brown MC, Holland RL, Hopkins WG. Motor nerve sprouting. Annu Rev Neurosci 4: 17–42, 1981. doi: 10.1146/annurev.ne.04.030181.000313. [PubMed] [CrossRef] [Google Scholar]

114. Brown MC, Hopkins WG, Keynes RJ. Comparison of effects of denervation and botulinum toxin paralysis on muscle properties in mice. J Physiol 327: 29–37, 1982. doi: 10.1113/jphysiol.1982.sp014217. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46: 223–234, 1995. doi: 10.1146/annurev.med.46.1.223. [PubMed] [CrossRef] [Google Scholar]

116. Bruce SA, Newton D, Woledge RC. Effect of age on voluntary force and cross-sectional area of human adductor pollicis muscle. Q J Exp Physiol 74: 359–362, 1989. doi: 10.1113/expphysiol.1989.sp003278. [PubMed] [CrossRef] [Google Scholar]

117. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015, 2004. doi: 10.1126/science.1094637. [PubMed] [CrossRef] [Google Scholar]

118. Brunetti M, Miscena A, Salviati A, Gaiti A. Effect of aging on the rate of axonal transport of choline-phosphoglycerides. Neurochem Res 12: 61–65, 1987. doi: 10.1007/BF00971365. [PubMed] [CrossRef] [Google Scholar]

119. Bruusgaard JC, Johansen IB, Egner IM, Rana ZA, Gundersen K. Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Proc Natl Acad Sci USA 107: 15111–15116, 2010. doi: 10.1073/pnas.0913935107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Bruusgaard JC, Liestøl K, Ekmark M, Kollstad K, Gundersen K. Number and spatial distribution of nuclei in the muscle fibres of normal mice studied in vivo. J Physiol 551: 467–478, 2003. doi: 10.1113/jphysiol.2003.045328. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Bruusgaard JC, Liestøl K, Gundersen K. Distribution of myonuclei and microtubules in live muscle fibers of young, middle-aged, and old mice. J Appl Physiol (1985) 100: 2024–2030, 2006. doi: 10.1152/japplphysiol.00913.2005. [PubMed] [CrossRef] [Google Scholar]

122. Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S, Aiken JM. Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet 79: 469–480, 2006. doi: 10.1086/507132. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Bucala R, Model P, Cerami A. Modification of DNA by reducing sugars: a possible mechanism for nucleic acid aging and age-related dysfunction in gene expression. Proc Natl Acad Sci USA 81: 105–109, 1984. doi: 10.1073/pnas.81.1.105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Burke RE, Levine DN, Tsairis P, Zajac FE III. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234: 723–748, 1973. doi: 10.1113/jphysiol.1973.sp010369. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Burke RE, Levine DN, Zajac FE III, Tsairis P, Engel WK. Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius. Science 174: 709–712, 1971. doi: 10.1126/science.174.4010.709. [PubMed] [CrossRef] [Google Scholar]

126. Caccia MR, Harris JB, Johnson MA. Morphology and physiology of skeletal muscle in aging rodents. Muscle Nerve 2: 202–212, 1979. doi: 10.1002/mus.880020308. [PubMed] [CrossRef] [Google Scholar]

127. Cammarato A, Li XE, Reedy MC, Lee CF, Lehman W, Bernstein SI. Structural basis for myopathic defects engendered by alterations in the myosin rod. J Mol Biol 414: 477–484, 2011. doi: 10.1016/j.jmb.2011.10.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Campbell MJ, McComas AJ, Petito F. Physiological changes in ageing muscles. J Neurol Neurosurg Psychiatry 36: 174–182, 1973. doi: 10.1136/jnnp.36.2.174. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Campello S, Scorrano L. Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Rep 11: 678–684, 2010. doi: 10.1038/embor.2010.115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Canepari M, Pellegrino MA, D’Antona G, Bottinelli R. Single muscle fiber properties in aging and disuse. Scand J Med Sci Sports 20: 10–19, 2010. doi: 10.1111/j.1600-0838.2009.00965.x. [PubMed] [CrossRef] [Google Scholar]

131. Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, Auwerx J. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11: 213–219, 2010. doi: 10.1016/j.cmet.2010.02.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Cantor S, Zhang W, Delestrée N, Remédio L, Mentis GZ, Burden SJ. Preserving neuromuscular synapses in ALS by stimulating MuSK with a therapeutic agonist antibody. eLife 7: e34375, 2018. doi: 10.7554/eLife.34375. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Capel F, Rimbert V, Lioger D, Diot A, Rousset P, Mirand PP, Boirie Y, Morio B, Mosoni L. Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved. Mech Ageing Dev 126: 505–511, 2005. doi: 10.1016/j.mad.2004.11.001. [PubMed] [CrossRef] [Google Scholar]

134. Cardasis CA. Ultrastructural evidence of continued reorganization at the aging (11–26 months) rat soleus neuromuscular junction. Anat Rec 207: 399–415, 1983. doi: 10.1002/ar.1092070303. [PubMed] [CrossRef] [Google Scholar]

135. Cardasis CA, LaFontaine DM. Aging rat neuromuscular junctions: a morphometric study of cholinesterase-stained whole mounts and ultrastructure. Muscle Nerve 10: 200–213, 1987. doi: 10.1002/mus.880100303. [PubMed] [CrossRef] [Google Scholar]

136. Cardasis CA, Padykula HA. Ultrastructural evidence indicating reorganization at the neuromuscular junction in the normal rat soleus muscle. Anat Rec 200: 41–59, 1981. doi: 10.1002/ar.1092000105. [PubMed] [CrossRef] [Google Scholar]

137. Carlson BM. Denervation and the aging of skeletal muscle. Basic Appl Myol 14: 135–139, 2004. [Google Scholar]

138. Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, Reischl M, Canepari M, Loefler S, Kern H, Blaauw B, Friguet B, Bottinelli R, Rudolf R, Sandri M. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Reports 8: 1509–1521, 2014. doi: 10.1016/j.celrep.2014.07.061. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Carpenter S, Karpati G. Necrosis of capillaries in denervation atrophy of human skeletal muscle. Muscle Nerve 5: 250–254, 1982. doi: 10.1002/mus.880050313. [PubMed] [CrossRef] [Google Scholar]

140. Carrieu M. Des amyotrophies spinalis secondaries. Contribution à l´étude de la diffusion des lésions irritatives du système nerveux. Montepellier 86: 11–87, 1875. [Google Scholar]

141. Casarin A, Giorgi G, Pertegato V, Siviero R, Cerqua C, Doimo M, Basso G, Sacconi S, Cassina M, Rizzuto R, Brosel S, M Davidson M, Dimauro S, Schon EA, Clementi M, Trevisson E, Salviati L. Copper and bezafibrate cooperate to rescue cytochrome c oxidase deficiency in cells of patients with SCO2 mutations. Orphanet J Rare Dis 7: 21, 2012. doi: 10.1186/1750-1172-7-21. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Cerutti R, Pirinen E, Lamperti C, Marchet S, Sauve AA, Li W, Leoni V, Schon EA, Dantzer F, Auwerx J, Viscomi C, Zeviani M. NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab 19: 1042–1049, 2014. doi: 10.1016/j.cmet.2014.04.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Cesari M, Kritchevsky SB, Baumgartner RN, Atkinson HH, Penninx BW, Lenchik L, Palla SL, Ambrosius WT, Tracy RP, Pahor M. Sarcopenia, obesity, and inflammation–results from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors study. Am J Clin Nutr 82: 428–434, 2005. doi: 10.1093/ajcn/82.2.428. [PubMed] [CrossRef] [Google Scholar]

144. Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 7: 2–12, 2008. doi: 10.1111/j.1474-9726.2007.00347.x. [PubMed] [CrossRef] [Google Scholar]

145. Chai RJ, Vukovic J, Dunlop S, Grounds MD, Shavlakadze T. Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLoS One 6: e28090, 2011. doi: 10.1371/journal.pone.0028090. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

146. Chakkalakal JV, Jones KM, Basson MA, Brack AS. The aged niche disrupts muscle stem cell quiescence. Nature 490: 355–360, 2012. doi: 10.1038/nature11438. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A, Zhou D. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22: 78–83, 2016. doi: 10.1038/nm.4010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Chaturvedi RK, Beal MF. PPAR: a therapeutic target in Parkinson’s disease. J Neurochem 106: 506–518, 2008. doi: 10.1111/j.1471-4159.2008.05388.x. [PubMed] [CrossRef] [Google Scholar]

149. Chawla RK, Parks JS, Rudman D. Structural variants of human growth hormone: biochemical, genetic, and clinical aspects. Annu Rev Med 34: 519–547, 1983. doi: 10.1146/annurev.me.34.020183.002511. [PubMed] [CrossRef] [Google Scholar]

150. Cheek DB. The control of cell mass and replication. The DNA unit–a personal 20-year study. Early Hum Dev 12: 211–239, 1985. doi: 10.1016/0378-3782(85)90144-6. [PubMed] [CrossRef] [Google Scholar]

151. Chen KD, Alway SE. Clenbuterol reduces soleus muscle fatigue during disuse in aged rats. Muscle Nerve 24: 211–222, 2001. doi: 10.1002/1097-4598(200102)24:2<211::AID-MUS60>3.0.CO;2-D. [PubMed] [CrossRef] [Google Scholar]

152. Chen KD, Alway SE. A physiological level of clenbuterol does not prevent atrophy or loss of force in skeletal muscle of old rats. J Appl Physiol (1985) 89: 606–612, 2000. doi: 10.1152/jappl.2000.89.2.606. [PubMed] [CrossRef] [Google Scholar]

153. Chen YW, Nader GA, Baar KR, Fedele MJ, Hoffman EP, Esser KA. Response of rat muscle to acute resistance exercise defined by transcriptional and translational profiling. J Physiol 545: 27–41, 2002. doi: 10.1113/jphysiol.2002.021220. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Cheng S, Degens H, Evans M, Cheng SM, Selänne H, Rittweger J, Heinonen A, Suominen H, Strandberg T, Alen M, Korhonen MT. What Makes a 97-Year-Old Man Cycle 5,000 km a Year? Gerontology 62: 508–512, 2016. doi: 10.1159/000443390. [PubMed] [CrossRef] [Google Scholar]

155. Chernov AV, Dolkas J, Hoang K, Angert M, Srikrishna G, Vogl T, Baranovskaya S, Strongin AY, Shubayev VI. The calcium-binding proteins S100A8 and S100A9 initiate the early inflammatory program in injured peripheral nerves. J Biol Chem 290: 11771–11784, 2015. doi: 10.1074/jbc.M114.622316. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

156. Chilibeck PD, Paterson DH, Cunningham DA, Taylor AW, Noble EG. Muscle capillarization O2 diffusion distance, and VO2 kinetics in old and young individuals. J Appl Physiol (1985) 82: 63–69, 1997. doi: 10.1152/jappl.1997.82.1.63. [PubMed] [CrossRef] [Google Scholar]

157. Chopek JW, Gardiner PF. Life-long caloric restriction: Effect on age-related changes in motoneuron numbers, sizes and apoptotic markers. Mech Ageing Dev 131: 650–659, 2010. doi: 10.1016/j.mad.2010.09.001. [PubMed] [CrossRef] [Google Scholar]

158. Christov C, Chrétien F, Abou-Khalil R, Bassez G, Vallet G, Authier FJ, Bassaglia Y, Shinin V, Tajbakhsh S, Chazaud B, Gherardi RK. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18: 1397–1409, 2007. doi: 10.1091/mbc.e06-08-0693. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, Metzger K, Frezza C, Annaert W, D’Adamio L, Derks C, Dejaegere T, Pellegrini L, D’Hooge R, Scorrano L, De Strooper B. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126: 163–175, 2006. doi: 10.1016/j.cell.2006.06.021. [PubMed] [CrossRef] [Google Scholar]

160. Civiletto G, Varanita T, Cerutti R, Gorletta T, Barbaro S, Marchet S, Lamperti C, Viscomi C, Scorrano L, Zeviani M. Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab 21: 845–854, 2015. doi: 10.1016/j.cmet.2015.04.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

161. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441: 1162–1166, 2006. doi: 10.1038/nature04779. [PubMed] [CrossRef] [Google Scholar]

162. Clément K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA, Sicard A, Rome S, Benis A, Zucker JD, Vidal H, Laville M, Barsh GS, Basdevant A, Stich V, Cancello R, Langin D. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J 18: 1657–1669, 2004. doi: 10.1096/fj.04-2204com. [PubMed] [CrossRef] [Google Scholar]

163. Close RI. Dynamic properties of mammalian skeletal muscles. Physiol Rev 52: 129–197, 1972. doi: 10.1152/physrev.1972.52.1.129. [PubMed] [CrossRef] [Google Scholar]

164. Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO. Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J Gerontol 47: B71–B76, 1992. doi: 10.1093/geronj/47.3.B71. [PubMed] [CrossRef] [Google Scholar]

165. Coggan AR, Spina RJ, Rogers MA, King DS, Brown M, Nemeth PM, Holloszy JO. Histochemical and enzymatic characteristics of skeletal muscle in master athletes. J Appl Physiol (1985) 68: 1896–1901, 1990. doi: 10.1152/jappl.1990.68.5.1896. [PubMed] [CrossRef] [Google Scholar]

166. Cogliati S, Enriquez JA, Scorrano L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem Sci 41: 261–273, 2016. doi: 10.1016/j.tibs.2016.01.001. [PubMed] [CrossRef] [Google Scholar]

167. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155: 160–171, 2013. doi: 10.1016/j.cell.2013.08.032. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Combaret L, Dardevet D, Rieu I, Pouch MN, Béchet D, Taillandier D, Grizard J, Attaix D. A leucine-supplemented diet restores the defective postprandial inhibition of proteasome-dependent proteolysis in aged rat skeletal muscle. J Physiol 569: 489–499, 2005. doi: 10.1113/jphysiol.2005.098004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

169. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433: 760–764, 2005. doi: 10.1038/nature03260. [PubMed] [CrossRef] [Google Scholar]

170. Conley KE, Jubrias SA, Esselman PC. Oxidative capacity and ageing in human muscle. J Physiol 526: 203–210, 2000. doi: 10.1111/j.1469-7793.2000.t01-1-00203.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

171. Cook JJ, Wailgum TD, Vasthare US, Mayrovitz HN, Tuma RF. Age-related alterations in the arterial microvasculature of skeletal muscle. J Gerontol 47: B83–B88, 1992. doi: 10.1093/geronj/47.3.B83. [PubMed] [CrossRef] [Google Scholar]

172. Coppé JP, Patil CK, Rodier F, Krtolica A, Beauséjour CM, Parrinello S, Hodgson JG, Chin K, Desprez PY, Campisi J. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One 5: e9188, 2010. doi: 10.1371/journal.pone.0009188. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

173. Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6: 2853–2868, 2008. doi: 10.1371/journal.pbio.0060301. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

174. Corbin KB, Gardner ED. Decrease in number of myelinated fibers in human spinal roots with age. Anat Rec 68: 63–74, 1937. doi: 10.1002/ar.1090680105. [CrossRef] [Google Scholar]

175. Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY, Llewellyn ME, Delp SL, Blau HM. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 20: 255–264, 2014. doi: 10.1038/nm.3464. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Cottrell L. Histologic variations with age in apparently normal peripheral nerve trunks. Arch Neurol Psychiatry 43: 1138–1150, 1940. doi: 10.1001/archneurpsyc.1940.02280060083004. [CrossRef] [Google Scholar]

177. Courtney J, Steinbach JH. Age changes in neuromuscular junction morphology and acetylcholine receptor distribution on rat skeletal muscle fibres. J Physiol 320: 435–447, 1981. doi: 10.1113/jphysiol.1981.sp013960. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

178. Couteaux R, Mira JC, d’Albis A. Regeneration of muscles after cardiotoxin injury. I. Cytological aspects. Biol Cell 62: 171–182, 1988. doi: 10.1111/j.1768-322X.1988.tb00719.x. [PubMed] [CrossRef] [Google Scholar]

179. Crist CG, Montarras D, Buckingham M. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell 11: 118–126, 2012. doi: 10.1016/j.stem.2012.03.011. [PubMed] [CrossRef] [Google Scholar]

180. Cristea A, Qaisar R, Edlund PK, Lindblad J, Bengtsson E, Larsson L. Effects of aging and gender on the spatial organization of nuclei in single human skeletal muscle cells. Aging Cell 9: 685–697, 2010. doi: 10.1111/j.1474-9726.2010.00594.x. [PubMed] [CrossRef] [Google Scholar]

181. Cristea A, Korhonen MT, Häkkinen K, Mero A, Alén M, Sipilä S, Viitasalo JT, Koljonen MJ, Suominen H, Larsson L. Effects of combined strength and sprint training on regulation of muscle contraction at the whole-muscle and single-fibre levels in elite master sprinters. Acta Physiol (Oxf) 193: 275–289, 2008. doi: 10.1111/j.1748-1716.2008.01843.x. [PubMed] [CrossRef] [Google Scholar]

182. Cristea A, Qaisar R, Edlund PK, Lindblad J, Bengtsson E, Larsson L. Effects of aging and gender on the spatial organization of nuclei in single human skeletal muscle cells. Aging Cell 9: 685–697, 2010. doi: 10.1111/j.1474-9726.2010.00594.x. [PubMed] [CrossRef] [Google Scholar]

183. Cristea A, Vaillancourt DE, Larsson L. (Editors). Aging-related changes motor unit structure and function. In: Sarcopenia-Age-Related Muscle Wasting And Weakness: Mechanisms And Treatments. New York: Springer, 2010, p. 55–74. [Google Scholar]

184. Croley AN, Zwetsloot KA, Westerkamp LM, Ryan NA, Pendergast AM, Hickner RC, Pofahl WE, Gavin TP. Lower capillarization, VEGF protein, and VEGF mRNA response to acute exercise in the vastus lateralis muscle of aged vs. young women. J Appl Physiol (1985) 99: 1872–1879, 2005. doi: 10.1152/japplphysiol.00498.2005. [PubMed] [CrossRef] [Google Scholar]

185. Crosbie RH, Lebakken CS, Holt KH, Venzke DP, Straub V, Lee JC, Grady RM, Chamberlain JS, Sanes JR, Campbell KP. Membrane targeting and stabilization of sarcospan is mediated by the sarcoglycan subcomplex. J Cell Biol 145: 153–165, 1999. doi: 10.1083/jcb.145.1.153. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

186. Cui L, Ju Y, Ding L, Trejo-Morales M, Olfert IM. Arteriolar and venular capillary distribution in skeletal muscles of old rats. J Gerontol A Biol Sci Med Sci 63: 928–935, 2008. doi: 10.1093/gerona/63.9.928. [PubMed] [CrossRef] [Google Scholar]

187. Culican SM, Nelson CC, Lichtman JW. Axon withdrawal during synapse elimination at the neuromuscular junction is accompanied by disassembly of the postsynaptic specialization and withdrawal of Schwann cell processes. J Neurosci 18: 4953–4965, 1998. doi: 10.1523/JNEUROSCI.18-13-04953.1998. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

188. Cullum NA, Mahon J, Stringer K, McLean WG. Glycation of rat sciatic nerve tubulin in experimental diabetes mellitus. Diabetologia 34: 387–389, 1991. doi: 10.1007/BF00403175. [PubMed] [CrossRef] [Google Scholar]

189. Cunningham DA, Morrison D, Rice CL, Cooke C. Ageing and isokinetic plantar flexion. Eur J Appl Physiol Occup Physiol 56: 24–29, 1987. doi: 10.1007/BF00696371. [PubMed] [CrossRef] [Google Scholar]

190. D’Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M, Saltin B, Bottinelli R. The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol 552: 499–511, 2003. doi: 10.1113/jphysiol.2003.046276. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

191. Dalakas MC. New neuromuscular symptoms after old polio (“the post-polio syndrome”): clinical studies and pathogenetic mechanisms. Birth Defects Orig Artic Ser 23: 241–264, 1987. [PubMed] [Google Scholar]

192. Dalkilic I, Kunkel LM. Muscular dystrophies: genes to pathogenesis. Curr Opin Genet Dev 13: 231–238, 2003. doi: 10.1016/S0959-437X(03)00048-0. [PubMed] [CrossRef] [Google Scholar]

192a. Das A, Huang GX, Bonkowski MS, Longchamp A, Li C, Schultz MB, Kim LJ, Osborne B, Joshi S, Lu Y, Trevino-Villarreal JH, Kang MJ, Hung TT, Lee B, Williams ED, Igarashi M, Mitchell JR, Wu LE, Turner N, Arany Z, Guarente L, Sinclair DA. Impairment of an endothelial NAD(+)-H2S signaling network is a reversible cause of vascular aging. Cell 173: 74–89.e20, 2018. [PMC free article] [PubMed] [Google Scholar]

193. Davidson YS, Clague JE, Horan MA, Pendleton N. The effect of aging on skeletal muscle capillarization in a murine model. J Gerontol A Biol Sci Med Sci 54: B448–B451, 1999. doi: 10.1093/gerona/54.10.B448. [PubMed] [CrossRef] [Google Scholar]

194. Davies CT, White MJ, Young K. Electrically evoked and voluntary maximal isometric tension in relation to dynamic muscle performance in elderly male subjects, aged 69 years. Eur J Appl Physiol Occup Physiol 51: 37–43, 1983. doi: 10.1007/BF00952535. [PubMed] [CrossRef] [Google Scholar]

195. De Coster W, De Reuck J, Sieben G, Vander Eecken H. Early ultrastructural changes in aging rat gastrocnemius muscle: a stereologic study. Muscle Nerve 4: 111–116, 1981. doi: 10.1002/mus.880040206. [PubMed] [CrossRef] [Google Scholar]

196. De Luca A, Pierno S, Cocchi D, Conte Camerino D. Growth hormone administration to aged rats improves membrane electrical properties of skeletal muscle fibers. J Pharmacol Exp Ther 269: 948–953, 1994. [PubMed] [Google Scholar]

196a. de Magalhaes JP. The scientific quest for lasting youth: prospects for curing aging. Rejuvenation Res 17: 458–467, 2014. [PMC free article] [PubMed] [Google Scholar]

197. de Waard MC, van der Pluijm I, Zuiderveen Borgesius N, Comley LH, Haasdijk ED, Rijksen Y, Ridwan Y, Zondag G, Hoeijmakers JH, Elgersma Y, Gillingwater TH, Jaarsma D. Age-related motor neuron degeneration in DNA repair-deficient Ercc1 mice. Acta Neuropathol 120: 461–475, 2010. doi: 10.1007/s00401-010-0715-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

198. Decary S, Hamida CB, Mouly V, Barbet JP, Hentati F, Butler-Browne GS. Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscul Disord 10: 113–120, 2000. doi: 10.1016/S0960-8966(99)00093-0. [PubMed] [CrossRef] [Google Scholar]

199. Degens H. Age-related changes in the microcirculation of skeletal muscle. Adv Exp Med Biol 454: 343–348, 1998. doi: 10.1007/978-1-4615-4863-8_40. [PubMed] [CrossRef] [Google Scholar]

200. Degens H. Determinants of skeletal muscle hypertrophy and the attenuated hypertrophic response at old age. J Sports Med Doping Studies 1: 003, 2012. [Google Scholar]

201. Degens H. The origin of senescence and death: an evolutionary enigma. Creation Res Soc Quarterly 44: 280–286, 2008. [Google Scholar]

202. Degens H. The role of systemic inflammation in age-related muscle weakness and wasting. Scand J Med Sci Sports 20: 28–38, 2010. doi: 10.1111/j.1600-0838.2009.01018.x. [PubMed] [CrossRef] [Google Scholar]

203. Degens H, Alway SE. Control of muscle size during disuse, disease, and aging. Int J Sports Med 27: 94–99, 2006. doi: 10.1055/s-2005-837571. [PubMed] [CrossRef] [Google Scholar]

204. Degens H, Alway SE. Skeletal muscle function and hypertrophy are diminished in old age. Muscle Nerve 27: 339–347, 2003. doi: 10.1002/mus.10314. [PubMed] [CrossRef] [Google Scholar]

205. Degens H, Anderson RK, Alway SE. Capillarization in skeletal muscle of rats with cardiac hypertrophy. Med Sci Sports Exerc 34: 258–266, 2002. doi: 10.1097/00005768-200202000-00013. [PubMed] [CrossRef] [Google Scholar]

206. Degens H, Deveci D, Botto-van Bemden A, Hoofd LJ, Egginton S. Maintenance of heterogeneity of capillary spacing is essential for adequate oxygenation in the soleus muscle of the growing rat. Microcirculation 13: 467–476, 2006. doi: 10.1080/10739680600776286. [PubMed] [CrossRef] [Google Scholar]

207. Degens H, Gilde AJ, Lindhout M, Willemsen PH, Van Der Vusse GJ, Van Bilsen M. Functional and metabolic adaptation of the heart to prolonged thyroid hormone treatment. Am J Physiol Heart Circ Physiol 284: H108–H115, 2003. doi: 10.1152/ajpheart.00282.2002. [PubMed] [CrossRef] [Google Scholar]

208. Degens H, Koşar SN, Hopman MT, de Haan A. The time course of denervation-induced changes is similar in soleus muscles of adult and old rats. Appl Physiol Nutr Metab 33: 299–308, 2008. doi: 10.1139/H07-189. [PubMed] [CrossRef] [Google Scholar]

209. Degens H, McPhee J. Muscle wasting, dysfunction and inflammaging. In: Inflammation, Advancing Age and Nutrition: Research and Clinical Interventions, edited by Rahman I, Bagchi D. New York: Elsevier, 2013, p. 243–250. [Google Scholar]

210. Degens H, Moore JA, Alway SE. Vascular endothelial growth factor, capillarization, and function of the rat plantaris muscle at the onset of hypertrophy. Jpn J Physiol 53: 181–191, 2003. doi: 10.2170/jjphysiol.53.181. [PubMed] [CrossRef] [Google Scholar]

211. Degens H, Morse CI, Hopman MT. Heterogeneity of capillary spacing in the hypertrophied plantaris muscle from young-adult and old rats. Adv Exp Med Biol 645: 61–66, 2009. doi: 10.1007/978-0-387-85998-9_10. [PubMed] [CrossRef] [Google Scholar]

212. Degens H, Ringnalda BE, Hoofd LJ. Capillarisation, fibre types and myoglobin content of the dog gracilis muscle. Adv Exp Med Biol 361: 533–539, 1994. doi: 10.1007/978-1-4615-1875-4_92. [PubMed] [CrossRef] [Google Scholar]

213. Degens H, Rittweger J. What is new in musculoskeletal interactions? Muscle oxygenation, myonuclear domain, acupuncture, titin and phosphate. J Musculoskelet Neuronal Interact 10: 245–248, 2010. [PubMed] [Google Scholar]

214. Degens H, Turek Z, Binkhorst RA. Compensatory hypertrophy and training effects on the functioning of aging rat m. plantaris. Mech Ageing Dev 66: 299–311, 1993. doi: 10.1016/0047-6374(93)90016-K. [PubMed] [CrossRef] [Google Scholar]

215. Degens H, Turek Z, Hoofd L, van’t Hof MA, Binkhorst RA. Capillarisation and fibre types in hypertrophied m. plantaris in rats of various ages. Respir Physiol 94: 217–226, 1993. doi: 10.1016/0034-5687(93)90049-G. [PubMed] [CrossRef] [Google Scholar]

216. Degens H, Turek Z, Hoofd LJ, Binkhorst RA. Capillary proliferation related to fibre types in hypertrophied aging rat M. plantaris. Adv Exp Med Biol 345: 669–676, 1994. doi: 10.1007/978-1-4615-2468-7_88. [PubMed] [CrossRef] [Google Scholar]

217. Degens H, Turek Z, Hoofd LJ, Van’t Hof MA, Binkhorst RA. The relationship between capillarisation and fibre types during compensatory hypertrophy of the plantaris muscle in the rat. J Anat 180: 455–463, 1992. [PMC free article] [PubMed] [Google Scholar]

218. Degens H, Yu F, Li X, Larsson L. Effects of age and gender on shortening velocity and myosin isoforms in single rat muscle fibres. Acta Physiol Scand 163: 33–40, 1998. doi: 10.1046/j.1365-201x.1998.00329.x. [PubMed] [CrossRef] [Google Scholar]

219. Del Campo A, Contreras-Hernández I, Castro-Sepúlveda M, Campos CA, Figueroa R, Tevy MF, Eisner V, Casas M, Jaimovich E. Muscle function decline and mitochondria changes in middle age precede sarcopenia in mice. Aging (Albany NY) 10: 34–55, 2018. [PMC free article] [PubMed] [Google Scholar]

220. Delbono O, Renganathan M, Messi ML. Excitation-Ca2+ release-contraction coupling in single aged human skeletal muscle fiber. Muscle Nerve Suppl 20, Suppl 5: S88–S92, 1997. doi: 10.1002/(SICI)1097-4598(1997)5+<88::AID-MUS21>3.0.CO;2-U. [PubMed] [CrossRef] [Google Scholar]

221. Denis C, Chatard JC, Dormois D, Linossier MT, Geyssant A, Lacour JR. Effects of endurance training on capillary supply of human skeletal muscle on two age groups (20 and 60 years). J Physiol (Paris) 81: 379–383, 1986. [PubMed] [Google Scholar]

222. Dennis RA, Przybyla B, Gurley C, Kortebein PM, Simpson P, Sullivan DH, Peterson CA. Aging alters gene expression of growth and remodeling factors in human skeletal muscle both at rest and in response to acute resistance exercise. Physiol Genomics 32: 393–400, 2008. doi: 10.1152/physiolgenomics.00191.2007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

223. DeRuisseau KC, Kavazis AN, Powers SK. Selective downregulation of ubiquitin conjugation cascade mRNA occurs in the senescent rat soleus muscle. Exp Gerontol 40: 526–531, 2005. doi: 10.1016/j.exger.2005.04.005. [PubMed] [CrossRef] [Google Scholar]

224. Desai VG, Weindruch R, Hart RW, Feuers RJ. Influences of age and dietary restriction on gastrocnemius electron transport system activities in mice. Arch Biochem Biophys 333: 145–151, 1996. doi: 10.1006/abbi.1996.0375. [PubMed] [CrossRef] [Google Scholar]

225. Desaki J, Ezaki T. Discontinuous capillary segments in the extensor digitorum longus muscle of aged BUF/Mna rats. J Electron Microsc (Tokyo) 51: 425–439, 2002. doi: 10.1093/jmicro/51.6.425. [PubMed] [CrossRef] [Google Scholar]

226. Desbats MA, Lunardi G, Doimo M, Trevisson E, Salviati L. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. J Inherit Metab Dis 38: 145–156, 2015. doi: 10.1007/s10545-014-9749-9. [PubMed] [CrossRef] [Google Scholar]

227. Desbats MA, Vetro A, Limongelli I, Lunardi G, Casarin A, Doimo M, Spinazzi M, Angelini C, Cenacchi G, Burlina A, Rodriguez Hernandez MA, Chiandetti L, Clementi M, Trevisson E, Navas P, Zuffardi O, Salviati L. Primary coenzyme Q10 deficiency presenting as fatal neonatal multiorgan failure. Eur J Hum Genet 23: 1254–1258, 2015. doi: 10.1038/ejhg.2014.277. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

228. Deschenes MR, Roby MA, Eason MK, Harris MB. Remodeling of the neuromuscular junction precedes sarcopenia related alterations in myofibers. Exp Gerontol 45: 389–393, 2010. doi: 10.1016/j.exger.2010.03.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

229. DeVan AE, Seals DR. Vascular health in the ageing athlete. Exp Physiol 97: 305–310, 2012. doi: 10.1113/expphysiol.2011.058792. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

230. Deveci D, Egginton S. Muscle ischaemia in rats may be relieved by overload-induced angiogenesis. Exp Physiol 87: 479–488, 2002. doi: 10.1111/j.1469-445X.2002.tb00061.x. [PubMed] [CrossRef] [Google Scholar]

231. Di Giulio C, Petruccelli G, Bianchi G, Cacchio M, Verratti V. Does hypoxia cause sarcopenia? Prevention of hypoxia could reduce sarcopenia. J Biol Regul Homeost Agents 23: 55–58, 2009. [PubMed] [Google Scholar]

232. Diao Y, Guo X, Li Y, Sun K, Lu L, Jiang L, Fu X, Zhu H, Sun H, Wang H, Wu Z. Pax3/7BP is a Pax7- and Pax3-binding protein that regulates the proliferation of muscle precursor cells by an epigenetic mechanism. Cell Stem Cell 11: 231–241, 2012. doi: 10.1016/j.stem.2012.05.022. [PubMed] [CrossRef] [Google Scholar]

233. Diaz M, Degens H, Vanhees L, Austin C, Azzawi M. The effects of resveratrol on aging vessels. Exp Gerontol 85: 41–47, 2016. doi: 10.1016/j.exger.2016.09.016. [PubMed] [CrossRef] [Google Scholar]

234. DiMauro S, Schon EA, Carelli V, Hirano M. The clinical maze of mitochondrial neurology. Nat Rev Neurol 9: 429–444, 2013. doi: 10.1038/nrneurol.2013.126. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

235. Dirks AJ, Leeuwenburgh C. Caloric restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev 127: 1–7, 2006. doi: 10.1016/j.mad.2005.09.001. [PubMed] [CrossRef] [Google Scholar]

236. Distefano G, Standley RA, Zhang X, Carnero EA, Yi F, Cornnell HH, Coen PM. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. J Cachexia Sarcopenia Muscle 9: 279–294, 2018. doi: 10.1002/jcsm.12272. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

237. Doimo M, Desbats MA, Baldoin MC, Lenzini E, Basso G, Murphy E, Graziano C, Seri M, Burlina A, Sartori G, Trevisson E, Salviati L. Functional analysis of missense mutations of OAT, causing gyrate atrophy of choroid and retina. Hum Mutat 34: 229–236, 2013. doi: 10.1002/humu.22233. [PubMed] [CrossRef] [Google Scholar]

238. Donato AJ, Uberoi A, Wray DW, Nishiyama S, Lawrenson L, Richardson RS. Differential effects of aging on limb blood flow in humans. Am J Physiol Heart Circ Physiol 290: H272–H278, 2006. doi: 10.1152/ajpheart.00405.2005. [PubMed] [CrossRef] [Google Scholar]

239. Dong X, Milholland B, Vijg J. Evidence for a limit to human lifespan. Nature 538: 257–259, 2016. doi: 10.1038/nature19793. [PubMed] [CrossRef] [Google Scholar]

240. Doyle AM, Mayer RF. Studies of the motor unit in the cat. Bull Sch Med Univ Md 54: 11–17, 1969. [Google Scholar]

241. Drey M, Sieber CC, Degens H, McPhee J, Korhonen MT, Müller K, Ganse B, Rittweger J. Relation between muscle mass, motor units and type of training in master athletes. Clin Physiol Funct Imaging 36: 70–76, 2016. doi: 10.1111/cpf.12195. [PubMed] [CrossRef] [Google Scholar]

242. Drummond MJ, Addison O, Brunker L, Hopkins PN, McClain DA, LaStayo PC, Marcus RL. Downregulation of E3 ubiquitin ligases and mitophagy-related genes in skeletal muscle of physically inactive, frail older women: a cross-sectional comparison. J Gerontol A Biol Sci Med Sci 69: 1040–1048, 2014. doi: 10.1093/gerona/glu004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

243. Duchen LW, Excell BJ, Patel R, Smith B. Changes in motor end-plates resulting from muscle fibre necrosis and regeneration. A light and electron microscopic study of the effects of the depolarizing fraction (cardiotoxin) of Dendroaspis jamesoni venom. J Neurol Sci 21: 391–417, 1974. doi: 10.1016/0022-510X(74)90041-0. [PubMed] [CrossRef] [Google Scholar]

244. Dudley GA, Duvoisin MR, Convertino VA, Buchanan P. Alterations of the in vivo torque-velocity relationship of human skeletal muscle following 30 days exposure to simulated microgravity. Aviat Space Environ Med 60: 659–663, 1989. [PubMed] [Google Scholar]

245. Dulhunty A, Valois A. Indentations in the terminal cisternae of amphibian and mammalian skeletal muscle fibers. J Ultrastruct Res 84: 34–49, 1983. doi: 10.1016/S0022-5320(83)90084-9. [PubMed] [CrossRef] [Google Scholar]

246. Dunaevsky A, Connor EA. Long-term maintenance of presynaptic function in the absence of target muscle fibers. J Neurosci 15: 6137–6144, 1995. doi: 10.1523/JNEUROSCI.15-09-06137.1995. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

247. Dunaevsky A, Connor EA. Stability of frog motor nerve terminals in the absence of target muscle fibers. Dev Biol 194: 61–71, 1998. doi: 10.1006/dbio.1997.8805. [PubMed] [CrossRef] [Google Scholar]

248. Duncan D. A relation between axone diameter and myelination determined by measurement of myelinated root fibres. J Comp Neurol 60: 437–471, 1934. doi: 10.1002/cne.900600305. [CrossRef] [Google Scholar]

249. Durham SE, Bonilla E, Samuels DC, DiMauro S, Chinnery PF. Mitochondrial DNA copy number threshold in mtDNA depletion myopathy. Neurology 65: 453–455, 2005. doi: 10.1212/01.wnl.0000171861.30277.88. [PubMed] [CrossRef] [Google Scholar]

250. Eccles JC, Sherrington CS. Numbers and contraction values of individual motor units examined in some muscles of the limb. Proc R Soc Lond B Biol Sci 106: 326–357, 1930. doi: 10.1098/rspb.1930.0032. [CrossRef] [Google Scholar]

251. Echaniz-Laguna A, Mohr M, Lannes B, Tranchant C. Myopathies in the elderly: a hospital-based study. Neuromuscul Disord 20: 443–447, 2010. doi: 10.1016/j.nmd.2010.05.003. [PubMed] [CrossRef] [Google Scholar]

252. Eddinger TJ, Cassens RG, Moss RL. Mechanical and histochemical characterization of skeletal muscles from senescent rats. Am J Physiol 251: C421–C430, 1986. doi: 10.1152/ajpcell.1986.251.3.C421. [PubMed] [CrossRef] [Google Scholar]

253. Edgerton VR, Roy RR. Regulation of skeletal muscle fiber size, shape and function. J Biomech 24, Suppl 1: 123–133, 1991. doi: 10.1016/0021-9290(91)90383-X. [PubMed] [CrossRef] [Google Scholar]

254. Edgerton VR, Zhou MY, Ohira Y, Klitgaard H, Jiang B, Bell G, Harris B, Saltin B, Gollnick PD, Roy RR, et. Human fiber size and enzymatic properties after 5 and 11 days of spaceflight. J Appl Physiol (1985) 78: 1733–1739, 1995. doi: 10.1152/jappl.1995.78.5.1733. [PubMed] [CrossRef] [Google Scholar]

255. Edington DW, Cosmas AC, McCafferty WB. Exercise and longevity: evidence for a threshold age. J Gerontol 27: 341–343, 1972. doi: 10.1093/geronj/27.3.341. [PubMed] [CrossRef] [Google Scholar]

256. Edström E, Altun M, Hägglund M, Ulfhake B. Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. J Gerontol A Biol Sci Med Sci 61: 663–674, 2006. doi: 10.1093/gerona/61.7.663. [PubMed] [CrossRef] [Google Scholar]

257. Edström L, Kugelberg E. Histochemical composition, distribution of fibres and fatiguability of single motor units. Anterior tibial muscle of the rat. J Neurol Neurosurg Psychiatry 31: 424–433, 1968. doi: 10.1136/jnnp.31.5.424. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

258. Edström L, Larsson L. Effects of age on contractile and enzyme-histochemical properties of fast- and slow-twitch single motor units in the rat. J Physiol 392: 129–145, 1987. doi: 10.1113/jphysiol.1987.sp016773. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

259. Edström L, Larsson L. Effects of age on contractile and enzyme-histochemical properties of fast- and slow-twitch single motor units in the rat. J Physiol 392: 129–145, 1987. doi: 10.1113/jphysiol.1987.sp016773. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

260. Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, Swalley SE, Mallozzi C, Jacobi C, Jennings LL, Clay I, Laurent G, Ma S, Brachat S, Lach-Trifilieff E, Shavlakadze T, Trendelenburg AU, Brack AS, Glass DJ. GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration. Cell Metab 22: 164–174, 2015. doi: 10.1016/j.cmet.2015.05.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

261. Egerman MA, Glass DJ. Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol 49: 59–68, 2014. doi: 10.3109/10409238.2013.857291. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

262. Egginton S. Physiological factors influencing capillary growth. Acta Physiol (Oxf) 202: 225–239, 2011. doi: 10.1111/j.1748-1716.2010.02194.x. [PubMed] [CrossRef] [Google Scholar]

263. Egginton S, Badr I, Williams J, Hauton D, Baan GC, Jaspers RT. Physiological angiogenesis is a graded, not threshold, response. J Physiol 589: 195–206, 2011. doi: 10.1113/jphysiol.2010.194951. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

264. Egginton S, Gaffney E. Tissue capillary supply–it’s quality not quantity that counts! Exp Physiol 95: 971–979, 2010. doi: 10.1113/expphysiol.2010.053421. [PubMed] [CrossRef] [Google Scholar]

265. Einsiedel LJ, Luff AR. Effect of partial denervation on motor units in the ageing rat medial gastrocnemius. J Neurol Sci 112: 178–184, 1992. doi: 10.1016/0022-510X(92)90148-E. [PubMed] [CrossRef] [Google Scholar]

266. Emma F, Montini G, Parikh SM, Salviati L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Rev Nephrol 12: 267–280, 2016. doi: 10.1038/nrneph.2015.214. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

267. Englander LL, Rubin LL. Acetylcholine receptor clustering and nuclear movement in muscle fibers in culture. J Cell Biol 104: 87–95, 1987. doi: 10.1083/jcb.104.1.87. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

268. Englund DA, Kirn DR, Koochek A, Zhu H, Travison TG, Reid KF, von Berens Å, Melin M, Cederholm T, Gustafsson T, Fielding RA. Nutritional Supplementation With Physical Activity Improves Muscle Composition in Mobility-Limited Older Adults, The VIVE2 Study: A Randomized, Double-Blind, Placebo-Controlled Trial. J Gerontol A Biol Sci Med Sci 73: 95–101, 2018. doi: 10.1093/gerona/glx141. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

269. Erskine RM, Degens H. Muscle growth, repair and preservation. A mechanistic approach, in Nutrition and enhanced sports performance Muscle building, endurance and strength (Bagchi D, Nair S, Sen KS, editors). London: Academic press, 2013, p. 247–263. doi: 10.1016/B978-0-12-396454-0.00025-4. [CrossRef] [Google Scholar]

270. Evans WJ. Effects of aging and exercise on nutrition needs of the elderly. Nutr Rev 54: S35–S39, 1996. doi: 10.1111/j.1753-4887.1996.tb03785.x. [PubMed] [CrossRef] [Google Scholar]

271. Evans WJ. Exercise and protein metabolism. World Rev Nutr Diet 71: 21–33, 1993. doi: 10.1159/000422347. [PubMed] [CrossRef] [Google Scholar]

272. Evans WJ. Exercise, nutrition and aging. J Nutr 122, Suppl 3: 796–801, 1992. doi: 10.1093/jn/122.suppl_3.796. [PubMed] [CrossRef] [Google Scholar]

273. Evans WJ. Exercise, nutrition, and aging. Clin Geriatr Med 11: 725–734, 1995. doi: 10.1016/S0749-0690(18)30267-2. [PubMed] [CrossRef] [Google Scholar]

274. Faber JE, Zhang H, Lassance-Soares RM, Prabhakar P, Najafi AH, Burnett MS, Epstein SE. Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues. Arterioscler Thromb Vasc Biol 31: 1748–1756, 2011. doi: 10.1161/ATVBAHA.111.227314. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

275. Fahim MA, Holley JA, Robbins N. Scanning and light microscopic study of age changes at a neuromuscular junction in the mouse. J Neurocytol 12: 13–25, 1983. doi: 10.1007/BF01148085. [PubMed] [CrossRef] [Google Scholar]

276. Fananapazir L, Dalakas MC, Cyran F, Cohn G, Epstein ND. Missense mutations in the beta-myosin heavy-chain gene cause central core disease in hypertrophic cardiomyopathy. Proc Natl Acad Sci USA 90: 3993–3997, 1993. doi: 10.1073/pnas.90.9.3993. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

277. Faulkner JA, Brooks SV, Zerba E. Muscle atrophy and weakness with aging: contraction-induced injury as an underlying mechanism. J Gerontol A Biol Sci Med Sci 50: 124–129, 1995. [PubMed] [Google Scholar]

278. Faulkner JA, Jones DA, Round JM. Injury to skeletal muscles of mice by forced lengthening during contractions. Q J Exp Physiol 74: 661–670, 1989. doi: 10.1113/expphysiol.1989.sp003318. [PubMed] [CrossRef] [Google Scholar]

279. Faulkner JA, Larkin LM, Claflin DR, Brooks SV. Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol 34: 1091–1096, 2007. doi: 10.1111/j.1440-1681.2007.04752.x. [PubMed] [CrossRef] [Google Scholar]

280. Fauteck SP, Kandarian SC. Sensitive detection of myosin heavy chain composition in skeletal muscle under different loading conditions. Am J Physiol 268: C419–C424, 1995. doi: 10.1152/ajpcell.1995.268.2.C419. [PubMed] [CrossRef] [Google Scholar]

281. Fedorov YV, Jones NC, Olwin BB. Regulation of myogenesis by fibroblast growth factors requires beta-gamma subunits of pertussis toxin-sensitive G proteins. Mol Cell Biol 18: 5780–5787, 1998. doi: 10.1128/MCB.18.10.5780. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

282. Feng G, Krejci E, Molgo J, Cunningham JM, Massoulié J, Sanes JR. Genetic analysis of collagen Q: roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function. J Cell Biol 144: 1349–1360, 1999. doi: 10.1083/jcb.144.6.1349. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

283. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28: 41–51, 2000. doi: 10.1016/S0896-6273(00)00084-2. [PubMed] [CrossRef] [Google Scholar]

284. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 18: 4–25, 1997. doi: 10.1210/edrv.18.1.0287. [PubMed] [CrossRef] [Google Scholar]

285. Ferrington DA, Husom AD, Thompson LV. Altered proteasome structure, function, and oxidation in aged muscle. FASEB J 19: 644–646, 2005. doi: 10.1096/fj.04-2578fje. [PubMed] [CrossRef] [Google Scholar]

286. Ferrucci L, Harris TB, Guralnik JM, Tracy RP, Corti MC, Cohen HJ, Penninx B, Pahor M, Wallace R, Havlik RJ. Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc 47: 639–646, 1999. doi: 10.1111/j.1532-5415.1999.tb01583.x. [PubMed] [CrossRef] [Google Scholar]

287. Ferrucci L, Penninx BW, Volpato S, Harris TB, Bandeen-Roche K, Balfour J, Leveille SG, Fried LP, Md JM. Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J Am Geriatr Soc 50: 1947–1954, 2002. doi: 10.1046/j.1532-5415.2002.50605.x. [PubMed] [CrossRef] [Google Scholar]

288. Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA 263: 3029–3034, 1990. doi: 10.1001/jama.1990.03440220053029. [PubMed] [CrossRef] [Google Scholar]

289. Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, Roberts SB, Kehayias JJ, Lipsitz LA, Evans WJ. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med 330: 1769–1775, 1994. doi: 10.1056/NEJM199406233302501. [PubMed] [CrossRef] [Google Scholar]

290. Finer JT, Simmons RM, Spudich JA. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368: 113–119, 1994. doi: 10.1038/368113a0. [PubMed] [CrossRef] [Google Scholar]

291. Fischbach GD, Robbins N. Effect of chronic disuse of rat soleus neuromuscular junctions on postsynaptic membrane. J Neurophysiol 34: 562–569, 1971. doi: 10.1152/jn.1971.34.4.562. [PubMed] [CrossRef] [Google Scholar]

292. Fitts RH, Costill DL, Gardetto PR. Effect of swim exercise training on human muscle fiber function. J Appl Physiol (1985) 66: 465–475, 1989. doi: 10.1152/jappl.1989.66.1.465. [PubMed] [CrossRef] [Google Scholar]

293. Fitts RH, Peters JR, Dillon EL, Durham WJ, Sheffield-Moore M, Urban RJ. Weekly versus monthly testosterone administration on fast and slow skeletal muscle fibers in older adult males. J Clin Endocrinol Metab 100: E223–E231, 2015. doi: 10.1210/jc.2014-2759. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

294. Fitts RH, Winder WW, Brooke MH, Kaiser KK, Holloszy JO. Contractile, biochemical, and histochemical properties of thyrotoxic rat soleus muscle. Am J Physiol 238: C15–C20, 1980. doi: 10.1152/ajpcell.1980.238.1.C15. [PubMed] [CrossRef] [Google Scholar]

295. Fleg JL, Lakatta EG. Role of muscle loss in the age-associated reduction in VO2 max. J Appl Physiol (1985) 65: 1147–1151, 1988. doi: 10.1152/jappl.1988.65.3.1147. [PubMed] [CrossRef] [Google Scholar]

296. Florini JR. Hormonal control of muscle growth. Muscle Nerve 10: 577–598, 1987. doi: 10.1002/mus.880100702. [PubMed] [CrossRef] [Google Scholar]

297. Florini JR, Ewton DZ, Coolican SA. Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 17: 481–517, 1996. [PubMed] [Google Scholar]

298. Flück M, Hoppeler H. Molecular basis of skeletal muscle plasticity–from gene to form and function. Rev Physiol Biochem Pharmacol 146: 159–216, 2003. doi: 10.1007/s10254-002-0004-7. [PubMed] [CrossRef] [Google Scholar]

299. Folker ES, Baylies MK. Nuclear positioning in muscle development and disease. Front Physiol 4: 363, 2013. doi: 10.3389/fphys.2013.00363. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

300. Fox MA, Sanes JR, Borza DB, Eswarakumar VP, Fässler R, Hudson BG, John SW, Ninomiya Y, Pedchenko V, Pfaff SL, Rheault MN, Sado Y, Segal Y, Werle MJ, Umemori H. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129: 179–193, 2007. doi: 10.1016/j.cell.2007.02.035. [PubMed] [CrossRef] [Google Scholar]

301. Frantzell A, Ingelmark BE. Occurence and distribution of fatmin human muscles at various age levels. Acta Soc Med Ups 56: 59–87, 1951. [PubMed] [Google Scholar]

302. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126: 177–189, 2006. doi: 10.1016/j.cell.2006.06.025. [PubMed] [CrossRef] [Google Scholar]

303. Fridén J, Lieber RL. Segmental muscle fiber lesions after repetitive eccentric contractions. Cell Tissue Res 293: 165–171, 1998. doi: 10.1007/s004410051108. [PubMed] [CrossRef] [Google Scholar]

304. Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene 22: 9030–9040, 2003. doi: 10.1038/sj.onc.1207116. [PubMed] [CrossRef] [Google Scholar]

305. Frontera WR, Grimby L, Larsson L. Firing rate of the lower motoneuron and contractile properties of its muscle fibers after upper motoneuron lesion in man. Muscle Nerve 20: 938–947, 1997. doi: 10.1002/(SICI)1097-4598(199708)20:8<938::AID-MUS2>3.0.CO;2-7. [PubMed] [CrossRef] [Google Scholar]

306. Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R. Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol (1985) 88: 1321–1326, 2000. doi: 10.1152/jappl.2000.88.4.1321. [PubMed] [CrossRef] [Google Scholar]

307. Frontera WR, Hughes VA, Lutz KJ, Evans WJ. A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol (1985) 71: 644–650, 1991. doi: 10.1152/jappl.1991.71.2.644. [PubMed] [CrossRef] [Google Scholar]

308. Frontera WR, Meredith CN, O’Reilly KP, Knuttgen HG, Evans WJ. Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol (1985) 64: 1038–1044, 1988. doi: 10.1152/jappl.1988.64.3.1038. [PubMed] [CrossRef] [Google Scholar]

309. Frontera WR, Suh D, Krivickas LS, Hughes VA, Goldstein R, Roubenoff R. Skeletal muscle fiber quality in older men and women. Am J Physiol Cell Physiol 279: C611–C618, 2000. doi: 10.1152/ajpcell.2000.279.3.C611. [PubMed] [CrossRef] [Google Scholar]

310. Fuglevand AJ, Segal SS. Simulation of motor unit recruitment and microvascular unit perfusion: spatial considerations. J Appl Physiol (1985) 83: 1223–1234, 1997. doi: 10.1152/jappl.1997.83.4.1223. [PubMed] [CrossRef] [Google Scholar]

311. Fujisawa K. Some observations on the skeletal musculature of aged rats. I. Histological aspects. J Neurol Sci 22: 353–366, 1974. doi: 10.1016/0022-510X(74)90006-9. [PubMed] [CrossRef] [Google Scholar]

312. Funai K, Parkington JD, Carambula S, Fielding RA. Age-associated decrease in contraction-induced activation of downstream targets of Akt/mTor signaling in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 290: R1080–R1086, 2006. doi: 10.1152/ajpregu.00277.2005. [PubMed] [CrossRef] [Google Scholar]

313. Galea V. Changes in motor unit estimates with aging. J Clin Neurophysiol 13: 253–260, 1996. doi: 10.1097/00004691-199605000-00010. [PubMed] [CrossRef] [Google Scholar]

314. Gallegly JC, Turesky NA, Strotman BA, Gurley CM, Peterson CA, Dupont-Versteegden EE. Satellite cell regulation of muscle mass is altered at old age. J Appl Physiol (1985) 97: 1082–1090, 2004. doi: 10.1152/japplphysiol.00006.2004. [PubMed] [CrossRef] [Google Scholar]

315. Galler S, Hilber K, Gohlsch B, Pette D. Two functionally distinct myosin heavy chain isoforms in slow skeletal muscle fibres. FEBS Lett 410: 150–152, 1997. doi: 10.1016/S0014-5793(97)00556-5. [PubMed] [CrossRef] [Google Scholar]

316. Gan WB, Bishop DL, Turney SG, Lichtman JW. Vital imaging and ultrastructural analysis of individual axon terminals labeled by iontophoretic application of lipophilic dye. J Neurosci Methods 93: 13–20, 1999. doi: 10.1016/S0165-0270(99)00096-5. [PubMed] [CrossRef] [Google Scholar]

317. Gan WB, Lichtman JW. Synaptic segregation at the developing neuromuscular junction. Science 282: 1508–1511, 1998. doi: 10.1126/science.282.5393.1508. [PubMed] [CrossRef] [Google Scholar]

318. Gardetto PR, Schluter JM, Fitts RH. Contractile function of single muscle fibers after hindlimb suspension. J Appl Physiol (1985) 66: 2739–2749, 1989. doi: 10.1152/jappl.1989.66.6.2739. [PubMed] [CrossRef] [Google Scholar]

319. Gardner E. Decrease in human neurones with age. Anat Rec 77: 529–536, 1940. doi: 10.1002/ar.1090770409. [CrossRef] [Google Scholar]

320. Gaugler M, Brown A, Merrell E, DiSanto-Rose M, Rathmacher JA, Reynolds TH IV. PKB signaling and atrogene expression in skeletal muscle of aged mice. J Appl Physiol (1985) 111: 192–199, 2011. doi: 10.1152/japplphysiol.00175.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

321. Gava P, Kern H, Carraro U. Age-associated power decline from running, jumping, and throwing male masters world records. Exp Aging Res 41: 115–135, 2015. doi: 10.1080/0361073X.2015.1001648. [PubMed] [CrossRef] [Google Scholar]

322. Gavin TP, Ruster RS, Carrithers JA, Zwetsloot KA, Kraus RM, Evans CA, Knapp DJ, Drew JL, McCartney JS, Garry JP, Hickner RC. No difference in the skeletal muscle angiogenic response to aerobic exercise training between young and aged men. J Physiol 585: 231–239, 2007. doi: 10.1113/jphysiol.2007.143198. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

323. Geisterfer-Lowrance AA, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, Seidman JG. A mouse model of familial hypertrophic cardiomyopathy. Science 272: 731–734, 1996. doi: 10.1126/science.272.5262.731. [PubMed] [CrossRef] [Google Scholar]

324. Gensler S, Sander A, Korngreen A, Traina G, Giese G, Witzemann V. Assembly and clustering of acetylcholine receptors containing GFP-tagged epsilon or gamma subunits: selective targeting to the neuromuscular junction in vivo. Eur J Biochem 268: 2209–2217, 2001. doi: 10.1046/j.1432-1327.2001.02093.x. [PubMed] [CrossRef] [Google Scholar]

325. Germani A, Di Carlo A, Mangoni A, Straino S, Giacinti C, Turrini P, Biglioli P, Capogrossi MC. Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol 163: 1417–1428, 2003. doi: 10.1016/S0002-9440(10)63499-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

326. Ghosh P, Mora Solis FR, Dominguez JM II, Spier SA, Donato AJ, Delp MD, Muller-Delp JM. Exercise training reverses aging-induced impairment of myogenic constriction in skeletal muscle arterioles. J Appl Physiol (1985) 118: 904–911, 2015. doi: 10.1152/japplphysiol.00277.2014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

327. Gibson MC, Schultz E. Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve 6: 574–580, 1983. doi: 10.1002/mus.880060807. [PubMed] [CrossRef] [Google Scholar]

328. Gill JF, Santos G, Schnyder S, Handschin C. PGC-1α affects aging-related changes in muscle and motor function by modulating specific exercise-mediated changes in old mice. Aging Cell 17: e12697, 2018. doi: 10.1111/acel.12697. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

329. Giresi PG, Stevenson EJ, Theilhaber J, Koncarevic A, Parkington J, Fielding RA, Kandarian SC. Identification of a molecular signature of sarcopenia. Physiol Genomics 21: 253–263, 2005. doi: 10.1152/physiolgenomics.00249.2004. [PubMed] [CrossRef] [Google Scholar]

330. Gliemann L, Olesen J, Biensø RS, Schmidt JF, Akerstrom T, Nyberg M, Lindqvist A, Bangsbo J, Hellsten Y. Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men. Am J Physiol Heart Circ Physiol 307: H1111–H1119, 2014. doi: 10.1152/ajpheart.00168.2014. [PubMed] [CrossRef] [Google Scholar]

331. Goethals S, Ydens E, Timmerman V, Janssens S. Toll-like receptor expression in the peripheral nerve. Glia 58: 1701–1709, 2010. doi: 10.1002/glia.21041. [PubMed] [CrossRef] [Google Scholar]

332. Goldman D, Bateman RM, Ellis CG. Effect of decreased O2 supply on skeletal muscle oxygenation and O2 consumption during sepsis: role of heterogeneous capillary spacing and blood flow. Am J Physiol Heart Circ Physiol 290: H2277–H2285, 2006. doi: 10.1152/ajpheart.00547.2005. [PubMed] [CrossRef] [Google Scholar]

333. Goldspink G, Scutt A, Martindale J, Jaenicke T, Turay L, Gerlach GF. Stretch and force generation induce rapid hypertrophy and myosin isoform gene switching in adult skeletal muscle. Biochem Soc Trans 19: 368–373, 1991. doi: 10.1042/bst0190368. [PubMed] [CrossRef] [Google Scholar]

334. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98: 14440–14445, 2001. doi: 10.1073/pnas.251541198. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

335. González E, Messi ML, Delbono O. The specific force of single intact extensor digitorum longus and soleus mouse muscle fibers declines with aging. J Membr Biol 178: 175–183, 2000. doi: 10.1007/s002320010025. [PubMed] [CrossRef] [Google Scholar]

336. Gonzalez E, Messi ML, Zheng Z, Delbono O. Insulin-like growth factor-1 prevents age-related decrease in specific force and intracellular Ca2+ in single intact muscle fibres from transgenic mice. J Physiol 552: 833–844, 2003. doi: 10.1113/jphysiol.2003.048165. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

337. Gonzalez M, Ruggiero FP, Chang Q, Shi YJ, Rich MM, Kraner S, Balice-Gordon RJ. Disruption of Trkb-mediated signaling induces disassembly of postsynaptic receptor clusters at neuromuscular junctions. Neuron 24: 567–583, 1999. doi: 10.1016/S0896-6273(00)81113-7. [PubMed] [CrossRef] [Google Scholar]

337a. Gonzalez-Freire M, Semba RD, Ubaida-Mohien C, Fabbri E, Scalzo P, Hojlund K, Dufresne C, Lyashkov A, Ferrucci L. The Human Skeletal Muscle Proteome Project: a reappraisal of the current literature. J Cachexia Sarcopenia Muscle 8: 5–18, 2017. [PMC free article] [PubMed] [Google Scholar]

338. Gopinath SD, Webb AE, Brunet A, Rando TA. FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. Stem Cell Rep 2: 414–426, 2014. doi: 10.1016/j.stemcr.2014.02.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

339. Gorza L, Gundersen K, Lømo T, Schiaffino S, Westgaard RH. Slow-to-fast transformation of denervated soleus muscles by chronic high-frequency stimulation in the rat. J Physiol 402: 627–649, 1988. doi: 10.1113/jphysiol.1988.sp017226. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

340. Gospodarowicz D, Greene G, Moran J. Fibroblast growth factor can substitute for platelet factor to sustain the growth of Balb/3T3 cells in the presence of plasma. Biochem Biophys Res Commun 65: 779–787, 1975. doi: 10.1016/S0006-291X(75)80213-0. [PubMed] [CrossRef] [Google Scholar]

341. Gospodarowicz D, Weseman J, Moran J. Presence in brain of a mitogenic agent promoting proliferation of myoblasts in low density culture. Nature 256: 216–219, 1975. doi: 10.1038/256216a0. [PubMed] [CrossRef] [Google Scholar]

342. Gouspillou G, Bourdel-Marchasson I, Rouland R, Calmettes G, Franconi JM, Deschodt-Arsac V, Diolez P. Alteration of mitochondrial oxidative phosphorylation in aged skeletal muscle involves modification of adenine nucleotide translocator. Biochim Biophys Acta 1797: 143–151, 2010. doi: 10.1016/j.bbabio.2009.09.004. [PubMed] [CrossRef] [Google Scholar]

343. Gouspillou G, Sgarioto N, Kapchinsky S, Purves-Smith F, Norris B, Pion CH, Barbat-Artigas S, Lemieux F, Taivassalo T, Morais JA, Aubertin-Leheudre M, Hepple RT. Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J 28: 1621–1633, 2014. doi: 10.1096/fj.13-242750. [PubMed] [CrossRef] [Google Scholar]

344. Gouspillou G, Sgarioto N, Norris B, Barbat-Artigas S, Aubertin-Leheudre M, Morais JA, Burelle Y, Taivassalo T, Hepple RT. The relationship between muscle fiber type-specific PGC-1α content and mitochondrial content varies between rodent models and humans. PLoS One 9: e103044, 2014. doi: 10.1371/journal.pone.0103044. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

345. Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology 18: 447–476, 2017. doi: 10.1007/s10522-017-9685-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

346. Grady RM, Starr DA, Ackerman GL, Sanes JR, Han M. Syne proteins anchor muscle nuclei at the neuromuscular junction. Proc Natl Acad Sci USA 102: 4359–4364, 2005. doi: 10.1073/pnas.0500711102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

347. Gray SD, Renkin EM. Microvascular supply in relation to fiber metabolic type in mixed skeletal muscles on rabbits. Microvasc Res 16: 406–425, 1978. doi: 10.1016/0026-2862(78)90073-0. [PubMed] [CrossRef] [Google Scholar]

348. Greaser ML, Moss RL, Reiser PJ. Variations in contractile properties of rabbit single muscle fibres in relation to troponin T isoforms and myosin light chains. J Physiol 406: 85–98, 1988. doi: 10.1113/jphysiol.1988.sp017370. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

349. Green H, Goreham C, Ouyang J, Ball-Burnett M, Ranney D. Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise. Am J Physiol 276: R591–R596, 1999. [PubMed] [Google Scholar]

350. Greenman MJ. The number, size and axis-sheath relation of large myelinated fibers in the peroneal nerve of the inbred albino rat under normal conditions, in disease and after stimulation. J Comp Neurol 27: 403–420, 1917. doi: 10.1002/cne.900270305. [CrossRef] [Google Scholar]

351. Greggio C, Jha P, Kulkarni SS, Lagarrigue S, Broskey NT, Boutant M, Wang X, Conde Alonso S, Ofori E, Auwerx J, Cantó C, Amati F. Enhanced Respiratory Chain Supercomplex Formation in Response to Exercise in Human Skeletal Muscle. Cell Metab 25: 301–311, 2017. doi: 10.1016/j.cmet.2016.11.004. [PubMed] [CrossRef] [Google Scholar]

352. Greiwe JS, Cheng B, Rubin DC, Yarasheski KE, Semenkovich CF. Resistance exercise decreases skeletal muscle tumor necrosis factor alpha in frail elderly humans. FASEB J 15: 475–482, 2001. doi: 10.1096/fj.00-0274com. [PubMed] [CrossRef] [Google Scholar]

353. Gremeaux V, Gayda M, Lepers R, Sosner P, Juneau M, Nigam A. Exercise and longevity. Maturitas 73: 312–317, 2012. doi: 10.1016/j.maturitas.2012.09.012. [PubMed] [CrossRef] [Google Scholar]

354. Grimby G, Stålberg E. Dynamic changes in muscle structure and electrophysiology in late polio with aspects on muscular trainability. Scand J Rehabil Med Suppl 30: 33–44, 1994. [PubMed] [Google Scholar]

355. Grimby L, Tollbäck A, Müller U, Larsson L. Fatigue of chronically overused motor units in prior polio patients. Muscle Nerve 19: 728–737, 1996. doi: 10.1002/(SICI)1097-4598(199606)19:6<728::AID-MUS7>3.0.CO;2-C. [PubMed] [CrossRef] [Google Scholar]

356. Groen BB, Hamer HM, Snijders T, van Kranenburg J, Frijns D, Vink H, van Loon LJ. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J Appl Physiol (1985) 116: 998–1005, 2014. doi: 10.1152/japplphysiol.00919.2013. [PubMed] [CrossRef] [Google Scholar]

357. Günther S, Kim J, Kostin S, Lepper C, Fan CM, Braun T. Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. [Erratum in Cell Stem Cell 13: 769, 2013.] Cell Stem Cell 13: 590–601, 2013. doi: 10.1016/j.stem.2013.07.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

358. Gurahian SM, Goldberg SJ. Fatigue of lateral rectus and retractor bulbi motor units in cat. Brain Res 415: 281–292, 1987. doi: 10.1016/0006-8993(87)90210-1. [PubMed] [CrossRef] [Google Scholar]

359. Gutmann E, Hanzlíková V. Motor unit in old age. Nature 209: 921–922, 1966. doi: 10.1038/209921b0. [PubMed] [CrossRef] [Google Scholar]

360. Gutmann E, Hanzlíková V, Vysokocil F. Age changes in cross striated muscle of the rat. J Physiol 216: 331–343, 1971. doi: 10.1113/jphysiol.1971.sp009528. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

361. Gutmann E, Young JZ. The re-innervation of muscle after various periods of atrophy. J Anat 78: 15–43, 1944. [PMC free article] [PubMed] [Google Scholar]

362. Hagen JL, Krause DJ, Baker DJ, Fu MH, Tarnopolsky MA, Hepple RT. Skeletal muscle aging in F344BN F1-hybrid rats: I. Mitochondrial dysfunction contributes to the age-associated reduction in VO2max. J Gerontol A Biol Sci Med Sci 59: 1099–1110, 2004. doi: 10.1093/gerona/59.11.1099. [PubMed] [CrossRef] [Google Scholar]

363. Haidet GC, Parsons D. Reduced exercise capacity in senescent beagles: an evaluation of the periphery. Am J Physiol 260: H173–H182, 1991. [PubMed] [Google Scholar]

364. Hall ZW, Ralston E. Nuclear domains in muscle cells. Cell 59: 771–772, 1989. doi: 10.1016/0092-8674(89)90597-7. [PubMed] [CrossRef] [Google Scholar]

365. Halstead LS, Grimby G. Post-polio syndrome. Philadelphia: Hanley & Belfus, Inc, 1995, p. 1–230. [Google Scholar]

366. Halstead LS, Rossi CD. Post-polio syndrome: clinical experience with 132 consecutive outpatients. Birth Defects Orig Artic Ser 23: 13–26, 1987. [PubMed] [Google Scholar]

367. Hämäläinen N, Pette D. Expression of an alpha-cardiac like myosin heavy chain in diaphragm, chronically stimulated, and denervated fast-twitch muscles of rabbit. J Muscle Res Cell Motil 18: 401–411, 1997. doi: 10.1023/A:1018663218477. [PubMed] [CrossRef] [Google Scholar]

368. Hamer M, Molloy GJ. Association of C-reactive protein and muscle strength in the English Longitudinal Study of Ageing. Age (Dordr) 31: 171–177, 2009. doi: 10.1007/s11357-009-9097-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

369. Hamilton MA, Stevenson LW, Fonarow GC, Steimle A, Goldhaber JI, Child JS, Chopra IJ, Moriguchi JD, Hage A. Safety and hemodynamic effects of intravenous triiodothyronine in advanced congestive heart failure. Am J Cardiol 81: 443–447, 1998. doi: 10.1016/S0002-9149(97)00950-8. [PubMed] [CrossRef] [Google Scholar]

370. Harada Y, Noguchi A, Kishino A, Yanagida T. Sliding movement of single actin filaments on one-headed myosin filaments. Nature 326: 805–808, 1987. doi: 10.1038/326805a0. [PubMed] [CrossRef] [Google Scholar]

371. Haren MT, Malmstrom TK, Miller DK, Patrick P, Perry HM III, Herning MM, Banks WA, Morley JE. Higher C-reactive protein and soluble tumor necrosis factor receptor levels are associated with poor physical function and disability: a cross-sectional analysis of a cohort of late middle-aged African Americans. J Gerontol A Biol Sci Med Sci 65: 274–281, 2010. doi: 10.1093/gerona/glp148. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

373. Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH Jr, Heimovitz H, Cohen HJ, Wallace R. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med 106: 506–512, 1999. doi: 10.1016/S0002-9343(99)00066-2. [PubMed] [CrossRef] [Google Scholar]

374. Hartung V, Asmussen G. [The effect of age on the extra- and intrafusal muscle fibers in the soleus muscle of the rat]. Z Mikrosk Anat Forsch 102: 677–693, 1988. [PubMed] [Google Scholar]

375. Hashizume K, Kanda K. Differential effects of aging on motoneurons and peripheral nerves innervating the hindlimb and forelimb muscles of rats. Neurosci Res 22: 189–196, 1995. doi: 10.1016/0168-0102(95)00889-3. [PubMed] [CrossRef] [Google Scholar]

376. Hashizume K, Kanda K, Burke RE. Medial gastrocnemius motor nucleus in the rat: age-related changes in the number and size of motoneurons. J Comp Neurol 269: 425–430, 1988. doi: 10.1002/cne.902690309. [PubMed] [CrossRef] [Google Scholar]

377. Haus JM, Carrithers JA, Trappe SW, Trappe TA. Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. J Appl Physiol (1985) 103: 2068–2076, 2007. doi: 10.1152/japplphysiol.00670.2007. [PubMed] [CrossRef] [Google Scholar]

378. Hausburg MA, Doles JD, Clement SL, Cadwallader AB, Hall MN, Blackshear PJ, Lykke-Andersen J, Olwin BB. Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay. eLife 4: e03390, 2015. doi: 10.7554/eLife.03390. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

379. Hauton D, Winter J, Al-Shammari AA, Gaffney EA, Evans RD, Egginton S. Changes to both cardiac metabolism and performance accompany acute reductions in functional capillary supply. Biochim Biophys Acta 1850: 681–690, 2015. doi: 10.1016/j.bbagen.2014.12.014. [PubMed] [CrossRef] [Google Scholar]

380. Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol (1985) 91: 534–551, 2001. doi: 10.1152/jappl.2001.91.2.534. [PubMed] [CrossRef] [Google Scholar]

381. Head B, Griparic L, Amiri M, Gandre-Babbe S, van der Bliek AM. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 187: 959–966, 2009. doi: 10.1083/jcb.200906083. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

382. Hebert SL, Marquet-de Rougé P, Lanza IR, McCrady-Spitzer SK, Levine JA, Middha S, Carter RE, Klaus KA, Therneau TM, Highsmith EW, Nair KS. Mitochondrial Aging and Physical Decline: Insights From Three Generations of Women. J Gerontol A Biol Sci Med Sci 70: 1409–1417, 2015. doi: 10.1093/gerona/glv086. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

383. Heilmann C, Pette D. Molecular transformations in sarcoplasmic reticulum of fast-twitch muscle by electro-stimulation. Eur J Biochem 93: 437–446, 1979. doi: 10.1111/j.1432-1033.1979.tb12841.x. [PubMed] [CrossRef] [Google Scholar]

384. Heininger K. Aging is a deprivation syndrome driven by a germ-soma conflict. Ageing Res Rev 1: 481–536, 2002. doi: 10.1016/S1568-1637(02)00015-6. [PubMed] [CrossRef] [Google Scholar]

385. Hemenway D, Solnick SJ, Koeck C, Kytir J. The incidence of stairway injuries in Austria. Accid Anal Prev 26: 675–679, 1994. doi: 10.1016/0001-4575(94)90029-9. [PubMed] [CrossRef] [Google Scholar]

386. Hepple RT. Mitochondrial involvement and impact in aging skeletal muscle. Front Aging Neurosci 6: 211, 2014. doi: 10.3389/fnagi.2014.00211. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

387. Hepple RT, Hagen JL, Krause DJ, Jackson CC. Aerobic power declines with aging in rat skeletal muscles perfused at matched convective O2 delivery. J Appl Physiol (1985) 94: 744–751, 2003. doi: 10.1152/japplphysiol.00737.2002. [PubMed] [CrossRef] [Google Scholar]

388. Hepple RT, Mackinnon SL, Goodman JM, Thomas SG, Plyley MJ. Resistance and aerobic training in older men: effects on VO2peak and the capillary supply to skeletal muscle. J Appl Physiol (1985) 82: 1305–1310, 1997. doi: 10.1152/jappl.1997.82.4.1305. [PubMed] [CrossRef] [Google Scholar]

389. Hepple RT, Vogell JE. Anatomic capillarization is maintained in relative excess of fiber oxidative capacity in some skeletal muscles of late middle-aged rats. J Appl Physiol (1985) 96: 2257–2264, 2004. doi: 10.1152/japplphysiol.01309.2003. [PubMed] [CrossRef] [Google Scholar]

390. Heredia DJ, Schubert D, Maligireddy S, Hennig GW, Gould TW. A Novel Striated Muscle-Specific Myosin-Blocking Drug for the Study of Neuromuscular Physiology. Front Cell Neurosci 10: 276, 2016. doi: 10.3389/fncel.2016.00276. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

391. Hesser BA, Henschel O, Witzemann V. Synapse disassembly and formation of new synapses in postnatal muscle upon conditional inactivation of MuSK. Mol Cell Neurosci 31: 470–480, 2006. doi: 10.1016/j.mcn.2005.10.020. [PubMed] [CrossRef] [Google Scholar]

392. Hill AV. The dimensions of animals and their muscular dynamics. Sci Prog 38: 209–230, 1950. [Google Scholar]

393. Hill RR, Robbins N. Mode of enlargement of young mouse neuromuscular junctions observed repeatedly in vivo with visualization of pre- and postsynaptic borders. J Neurocytol 20: 183–194, 1991. doi: 10.1007/BF01186991. [PubMed] [CrossRef] [Google Scholar]

394. Hill RR, Robbins N, Fang ZP. Plasticity of presynaptic and postsynaptic elements of neuromuscular junctions repeatedly observed in living adult mice. J Neurocytol 20: 165–182, 1991. doi: 10.1007/BF01186990. [PubMed] [CrossRef] [Google Scholar]

395. Hippenmeyer S, Huber RM, Ladle DR, Murphy K, Arber S. ETS transcription factor Erm controls subsynaptic gene expression in skeletal muscles. Neuron 55: 726–740, 2007. doi: 10.1016/j.neuron.2007.07.028. [PubMed] [CrossRef] [Google Scholar]

396. Hirst TC, Ribchester RR. Segmentation of the mouse fourth deep lumbrical muscle connectome reveals concentric organisation of motor units. J Physiol 591: 4859–4875, 2013. doi: 10.1113/jphysiol.2013.258087. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

397. Hofmann PA, Greaser ML, Moss RL. C-protein limits shortening velocity of rabbit skeletal muscle fibres at low levels of Ca2+ activation. J Physiol 439: 701–715, 1991. doi: 10.1113/jphysiol.1991.sp018689. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

398. Hofmann PA, Hartzell HC, Moss RL. Alterations in Ca2+ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J Gen Physiol 97: 1141–1163, 1991. doi: 10.1085/jgp.97.6.1141. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

399. Hoh JF. Muscle fiber types and function. Curr Opin Rheumatol 4: 801–808, 1992. [PubMed] [Google Scholar]

400. Holdt LM, Sass K, Gäbel G, Bergert H, Thiery J, Teupser D. Expression of Chr9p21 genes CDKN2B (p15(INK4b)), CDKN2A (p16(INK4a), p14(ARF)) and MTAP in human atherosclerotic plaque. Atherosclerosis 214: 264–270, 2011. doi: 10.1016/j.atherosclerosis.2010.06.029. [PubMed] [CrossRef] [Google Scholar]

401. Holloway GP, Holwerda AM, Miotto PM, Dirks ML, Verdijk LB, van Loon LJC. Age-Associated Impairments in Mitochondrial ADP Sensitivity Contribute to Redox Stress in Senescent Human Skeletal Muscle. Cell Reports 22: 2837–2848, 2018. doi: 10.1016/j.celrep.2018.02.069. [PubMed] [CrossRef] [Google Scholar]

402. Homsher E, Wang F, Sellers JR. Factors affecting movement of F-actin filaments propelled by skeletal muscle heavy meromyosin. Am J Physiol 262: C714–C723, 1992. doi: 10.1152/ajpcell.1992.262.3.C714. [PubMed] [CrossRef] [Google Scholar]

403. Höök P, Larsson L. Actomyosin interactions in a novel single muscle fiber in vitro motility assay. J Muscle Res Cell Motil 21: 357–365, 2000. doi: 10.1023/A:1005614212575. [PubMed] [CrossRef] [Google Scholar]

404. Höök P, Li X, Sleep J, Hughes S, Larsson L. In vitro motility speed of slow myosin extracted from single soleus fibres from young and old rats. J Physiol 520: 463–471, 1999. doi: 10.1111/j.1469-7793.1999.00463.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

405. Höök P, Sriramoju V, Larsson L. Effects of aging on actin sliding speed on myosin from single skeletal muscle cells of mice, rats, and humans. Am J Physiol Cell Physiol 280: C782–C788, 2001. doi: 10.1152/ajpcell.2001.280.4.C782. [PubMed] [CrossRef] [Google Scholar]

406. Hook P, Sriramoju V, Larsson L. Effects of aging on actin sliding speed on myosin from single mouse, rat and human skeletal muscle cells. Am J Physiol Cell Physiol 280: C782–C788, 2001. doi: 10.1152/ajpcell.2001.280.4.C782. [PubMed] [CrossRef] [Google Scholar]

407. Hoppeler H, Vogt M. Muscle tissue adaptations to hypoxia. J Exp Biol 204: 3133–3139, 2001. [PubMed] [Google Scholar]

408. Houmard JA, Weidner ML, Gavigan KE, Tyndall GL, Hickey MS, Alshami A. Fiber type and citrate synthase activity in the human gastrocnemius and vastus lateralis with aging. J Appl Physiol (1985) 85: 1337–1341, 1998. doi: 10.1152/jappl.1998.85.4.1337. [PubMed] [CrossRef] [Google Scholar]

409. Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, Williams RW, Auwerx J. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497: 451–457, 2013. doi: 10.1038/nature12188. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

410. Hudlicka O, Brown M, Egginton S. Angiogenesis in skeletal and cardiac muscle. Physiol Rev 72: 369–417, 1992. doi: 10.1152/physrev.1992.72.2.369. [PubMed] [CrossRef] [Google Scholar]

411. Hudlicka O, Tyler KR, Wright AJA, Ziada AMAR. Growth of capillaries in skeletal muscles. Prog Appl Microcirc 5: 44–61, 1984. doi: 10.1159/000410083. [CrossRef] [Google Scholar]

412. Hughes SM, Cho M, Karsch-Mizrachi I, Travis M, Silberstein L, Leinwand LA, Blau HM. Three slow myosin heavy chains sequentially expressed in developing mammalian skeletal muscle. Dev Biol 158: 183–199, 1993. doi: 10.1006/dbio.1993.1178. [PubMed] [CrossRef] [Google Scholar]

413. Hwee DT, Baehr LM, Philp A, Baar K, Bodine SC. Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age. Aging Cell 13: 92–101, 2014. doi: 10.1111/acel.12150. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

414. Hvid L, Aagaard P, Justesen L, Bayer ML, Andersen JL, Ørtenblad N, Kjaer M, Suetta C. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining. J Appl Physiol (1985) 109: 1628–1634, 2010. doi: 10.1152/japplphysiol.00637.2010. [PubMed] [CrossRef] [Google Scholar]

415. Hvid LG, Suetta C, Nielsen JH, Jensen MM, Frandsen U, Ørtenblad N, Kjaer M, Aagaard P. Aging impairs the recovery in mechanical muscle function following 4 days of disuse. Exp Gerontol 52: 1–8, 2014. doi: 10.1016/j.exger.2014.01.012. [PubMed] [CrossRef] [Google Scholar]

416. Ibebunjo C, Chick JM, Kendall T, Eash JK, Li C, Zhang Y, Vickers C, Wu Z, Clarke BA, Shi J, Cruz J, Fournier B, Brachat S, Gutzwiller S, Ma Q, Markovits J, Broome M, Steinkrauss M, Skuba E, Galarneau JR, Gygi SP, Glass DJ. Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia. Mol Cell Biol 33: 194–212, 2013. doi: 10.1128/MCB.01036-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

417. Imamura K, Ashida H, Ishikawa T, Fujii M. Human major psoas muscle and sacrospinalis muscle in relation to age: a study by computed tomography. J Gerontol 38: 678–681, 1983. doi: 10.1093/geronj/38.6.678. [PubMed] [CrossRef] [Google Scholar]

418. Ingram DK. Age-related decline in physical activity: generalization to nonhumans. Med Sci Sports Exerc 32: 1623–1629, 2000. doi: 10.1097/00005768-200009000-00016. [PubMed] [CrossRef] [Google Scholar]

419. Irion GL, Vasthare US, Tuma RF. Age-related change in skeletal muscle blood flow in the rat. J Gerontol 42: 660–665, 1987. doi: 10.1093/geronj/42.6.660. [PubMed] [CrossRef] [Google Scholar]

420. Ishihara A, Naitoh H, Katsuta S. Effects of ageing on the total number of muscle fibers and motoneurons of the tibialis anterior and soleus muscles in the rat. Brain Res 435: 355–358, 1987. doi: 10.1016/0006-8993(87)91624-6. [PubMed] [CrossRef] [Google Scholar]

421. Jackson MJ. Reactive oxygen species in sarcopenia: Should we focus on excess oxidative damage or defective redox signalling? Mol Aspects Med 50: 33–40, 2016. doi: 10.1016/j.mam.2016.05.002. [PubMed] [CrossRef] [Google Scholar]

422. Jacobs JM, Love S. Qualitative and quantitative morphology of human sural nerve at different ages. Brain 108: 897–924, 1985. doi: 10.1093/brain/108.4.897. [PubMed] [CrossRef] [Google Scholar]

423. Jakobsson F, Borg K, Edström L, Grimby L. Use of motor units in relation to muscle fiber type and size in man. Muscle Nerve 11: 1211–1218, 1988. doi: 10.1002/mus.880111205. [PubMed] [CrossRef] [Google Scholar]

424. Janácek J, Cebasek V, Kubínová L, Ribaric S, Erzen I. 3D visualization and measurement of capillaries supplying metabolically different fiber types in the rat extensor digitorum longus muscle during denervation and reinnervation. J Histochem Cytochem 57: 437–447, 2009. doi: 10.1369/jhc.2008.953018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

425. Jandreski MA, Sole MJ, Liew CC. Two different forms of beta myosin heavy chain are expressed in human striated muscle. Hum Genet 77: 127–131, 1987. doi: 10.1007/BF00272378. [PubMed] [CrossRef] [Google Scholar]

426. Jang YC, Van Remmen H. Age-associated alterations of the neuromuscular junction. Exp Gerontol 46: 193–198, 2011. doi: 10.1016/j.exger.2010.08.029. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

427. Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol (1985) 89: 81–88, 2000. doi: 10.1152/jappl.2000.89.1.81. [PubMed] [CrossRef] [Google Scholar]

428. Ji LL, Kang C. Role of PGC-1α in sarcopenia: etiology and potential intervention - a mini-review. Gerontology 61: 139–148, 2015. doi: 10.1159/000365947. [PubMed] [CrossRef] [Google Scholar]

429. Jiménez-Moreno R, Wang ZM, Gerring RC, Delbono O. Sarcoplasmic reticulum Ca2+ release declines in muscle fibers from aging mice. Biophys J 94: 3178–3188, 2008. doi: 10.1529/biophysj.107.118786. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

430. Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191: 933–942, 2010. doi: 10.1083/jcb.201008084. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

431. Jirmanová I. Ultrastructure of motor end-plates during pharmacologically-induced degeneration and subsequent regeneration of skeletal muscle. J Neurocytol 4: 141–155, 1975. doi: 10.1007/BF01098779. [PubMed] [CrossRef] [Google Scholar]

432. Jones BA, Fangman WL. Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes Dev 6: 380–389, 1992. doi: 10.1101/gad.6.3.380. [PubMed] [CrossRef] [Google Scholar]

433. Jones NC, Fedorov YV, Rosenthal RS, Olwin BB. ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol 186: 104–115, 2001. doi: 10.1002/1097-4652(200101)186:1<104::AID-JCP1015>3.0.CO;2-0. [PubMed] [CrossRef] [Google Scholar]

434. Jones NC, Tyner KJ, Nibarger L, Stanley HM, Cornelison DD, Fedorov YV, Olwin BB. The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol 169: 105–116, 2005. doi: 10.1083/jcb.200408066. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

435. Jørgensen JO, Pedersen SA, Thuesen L, Jørgensen J, Ingemann-Hansen T, Skakkebaek NE, Christiansen JS. Beneficial effects of growth hormone treatment in GH-deficient adults. Lancet 133: 1221–1225, 1989. doi: 10.1016/S0140-6736(89)92328-3. [PubMed] [CrossRef] [Google Scholar]

436. Joseph AM, Adhihetty PJ, Wawrzyniak NR, Wohlgemuth SE, Picca A, Kujoth GC, Prolla TA, Leeuwenburgh C. Dysregulation of mitochondrial quality control processes contribute to sarcopenia in a mouse model of premature aging. PLoS One 8: e69327, 2013. doi: 10.1371/journal.pone.0069327. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

437. Józsa L, Järvinen M, Kvist M, Lehto M, Mikola A. Capillary density of tenotomized skeletal muscles. I. Experimental study in the rat. Eur J Appl Physiol Occup Physiol 44: 175–181, 1980. doi: 10.1007/BF00421096. [PubMed] [CrossRef] [Google Scholar]

438. Justice J, Miller JD, Newman JC, Hashmi SK, Halter J, Austad SN, Barzilai N, Kirkland JL. Frameworks for Proof-of-Concept Clinical Trials of Interventions That Target Fundamental Aging Processes. J Gerontol A Biol Sci Med Sci 71: 1415–1423, 2016. doi: 10.1093/gerona/glw126. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

439. Justice JN, Gregory H, Tchkonia T, LeBrasseur NK, Kirkland JL, Kritchevsky SB, Nicklas BJ. Cellular senescence biomarker p16INK4a+ cell burden in thigh adipose is associated with poor physical function in older women. J Gerontol A Biol Sci Med Sci 73: 939–945, 2018. doi: 10.1093/gerona/glx134. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

440. Kadenbach B, Münscher C, Müller-Höcker J. Mutations of mitochondrial DNA support human aging. Aging (Milano) 5: 73–75, 1993. [PubMed] [Google Scholar]

441. Kadi F, Charifi N, Denis C, Lexell J. Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve 29: 120–127, 2004. doi: 10.1002/mus.10510. [PubMed] [CrossRef] [Google Scholar]

442. Kalamgi RC, Larsson L. Mechanical Signaling in the Pathophysiology of Critical Illness Myopathy. Front Physiol 7: 23, 2016. doi: 10.3389/fphys.2016.00023. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

443. Corpeno Kalamgi R, Salah H, Gastaldello S, Martinez-Redondo V, Ruas JL, Fury W, Bai Y, Gromada J, Sartori R, Guttridge DC, Sandri M, Larsson L. Mechano-signalling pathways in an experimental intensive critical illness myopathy model. J Physiol 594: 4371–4388, 2016. doi: 10.1113/JP271973. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

444. Kanda K, Hashizume K. Changes in properties of the medial gastrocnemius motor units in aging rats. J Neurophysiol 61: 737–746, 1989. doi: 10.1152/jn.1989.61.4.737. [PubMed] [CrossRef] [Google Scholar]

445. Kang H, Tian L, Mikesh M, Lichtman JW, Thompson WJ. Terminal Schwann cells participate in neuromuscular synapse remodeling during reinnervation following nerve injury. J Neurosci 34: 6323–6333, 2014. doi: 10.1523/JNEUROSCI.4673-13.2014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

446. Kang H, Tian L, Son YJ, Zuo Y, Procaccino D, Love F, Hayworth C, Trachtenberg J, Mikesh M, Sutton L, Ponomareva O, Mignone J, Enikolopov G, Rimer M, Thompson W. Regulation of the intermediate filament protein nestin at rodent neuromuscular junctions by innervation and activity. J Neurosci 27: 5948–5957, 2007. doi: 10.1523/JNEUROSCI.0621-07.2007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

447. Kang I, Chu CT, Kaufman BA. The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. FEBS Lett 592: 793–811, 2018. doi: 10.1002/1873-3468.12989. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

448. Kano Y, Shimegi S, Furukawa H, Matsudo H, Mizuta T. Effects of aging on capillary number and luminal size in rat soleus and plantaris muscles. J Gerontol A Biol Sci Med Sci 57: B422–B427, 2002. doi: 10.1093/gerona/57.12.B422. [PubMed] [CrossRef] [Google Scholar]

449. Kano Y, Shimegi S, Takahashi H, Masuda K, Katsuta S. Changes in capillary luminal diameter in rat soleus muscle after hind-limb suspension. Acta Physiol Scand 169: 271–276, 2000. doi: 10.1046/j.1365-201x.2000.00743.x. [PubMed] [CrossRef] [Google Scholar]

450. Kasper CE, Xun L. Cytoplasm-to-myonucleus ratios in plantaris and soleus muscle fibres following hindlimb suspension. J Muscle Res Cell Motil 17: 603–610, 1996. doi: 10.1007/BF00124358. [PubMed] [CrossRef] [Google Scholar]

451. Katayama M, Tanaka M, Yamamoto H, Ohbayashi T, Nimura Y, Ozawa T. Deleted mitochondrial DNA in the skeletal muscle of aged individuals. Biochem Int 25: 47–56, 1991. [PubMed] [Google Scholar]

452. Katschinski DM. Is there a molecular connection between hypoxia and aging? Exp Gerontol 41: 482–484, 2006. doi: 10.1016/j.exger.2005.12.003. [PubMed] [CrossRef] [Google Scholar]

453. Kawabe Y, Wang YX, McKinnell IW, Bedford MT, Rudnicki MA. Carm1 regulates Pax7 transcriptional activity through MLL1/2 recruitment during asymmetric satellite stem cell divisions. Cell Stem Cell 11: 333–345, 2012. doi: 10.1016/j.stem.2012.07.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

454. Kawakami Y, Akima H, Kubo K, Muraoka Y, Hasegawa H, Kouzaki M, Imai M, Suzuki Y, Gunji A, Kanehisa H, Fukunaga T. Changes in muscle size, architecture, and neural activation after 20 days of bed rest with and without resistance exercise. Eur J Appl Physiol 84: 7–12, 2001. doi: 10.1007/s004210000330. [PubMed] [CrossRef] [Google Scholar]

455. Kawamura Y, O’Brien P, Okazaki H, Dyck PJ. Lumbar motoneurons of man II: the number and diameter distribution of large- and intermediate-diameter cytons in “motoneuron columns” of spinal cord of man. J Neuropathol Exp Neurol 36: 861–870, 1977. doi: 10.1097/00005072-197709000-00010. [PubMed] [CrossRef] [Google Scholar]

456. Kawamura Y, Okazaki H, O’Brien PC, Dyck PJ. Lumbar motoneurons of man: I) number and diameter histogram of alpha and gamma axons of ventral root. J Neuropathol Exp Neurol 36: 853–860, 1977. doi: 10.1097/00005072-197709000-00009. [PubMed] [CrossRef] [Google Scholar]

457. Kelley KA, Friedrich VL Jr, Sonshine A, Hu Y, Lax J, Li J, Drinkwater D, Dressler H, Herrup K. Expression of Thy-1/lacZ fusion genes in the CNS of transgenic mice. Brain Res Mol Brain Res 24: 261–274, 1994. doi: 10.1016/0169-328X(94)90139-2. [PubMed] [CrossRef] [Google Scholar]

458. Kent-Braun JA, Ng AV. Skeletal muscle oxidative capacity in young and older women and men. J Appl Physiol (1985) 89: 1072–1078, 2000. doi: 10.1152/jappl.2000.89.3.1072. [PubMed] [CrossRef] [Google Scholar]

459. Khan NA, Auranen M, Paetau I, Pirinen E, Euro L, Forsström S, Pasila L, Velagapudi V, Carroll CJ, Auwerx J, Suomalainen A. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med 6: 721–731, 2014. [PMC free article] [PubMed] [Google Scholar]

460. Khreiss T, József L, Potempa LA, Filep JG. Loss of pentameric symmetry in C-reactive protein induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils. Circ Res 97: 690–697, 2005. doi: 10.1161/01.RES.0000183881.11739.CB. [PubMed] [CrossRef] [Google Scholar]

461. Kihara M, Zollman PJ, Schmelzer JD, Low PA. The influence of dose of microspheres on nerve blood flow, electrophysiology, and fiber degeneration of rat peripheral nerve. Muscle Nerve 16: 1383–1389, 1993. doi: 10.1002/mus.880161218. [PubMed] [CrossRef] [Google Scholar]

462. Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462: 245–253, 2007. doi: 10.1016/j.abb.2007.03.034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

463. Kim JH, Torgerud WS, Mosser KH, Hirai H, Watanabe S, Asakura A, Thompson LV. Myosin light chain 3f attenuates age-induced decline in contractile velocity in MHC type II single muscle fibers. Aging Cell 11: 203–212, 2012. doi: 10.1111/j.1474-9726.2011.00774.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

464. Kimball SR, O’Malley JP, Anthony JC, Crozier SJ, Jefferson LS. Assessment of biomarkers of protein anabolism in skeletal muscle during the life span of the rat: sarcopenia despite elevated protein synthesis. Am J Physiol Endocrinol Metab 287: E772–E780, 2004. doi: 10.1152/ajpendo.00535.2003. [PubMed] [CrossRef] [Google Scholar]

465. Kirkland JL. Inflammation and cellular senescence: potential contribution to chronic diseases and disabilities with aging. Inflammation and cellular senescence: potential contribution to chronic diseases and disabilities with aging. Public Policy and Aging Report 23: 12–15, 2013. doi: 10.1093/ppar/23.4.12. [CrossRef] [Google Scholar]

466. Kirkland JL, Tchkonia T. Cellular Senescence: A Translational Perspective. EBioMedicine 21: 21–28, 2017. doi: 10.1016/j.ebiom.2017.04.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

467. Kirkwood TB. Evolution of ageing. Mech Ageing Dev 123: 737–745, 2002. doi: 10.1016/S0047-6374(01)00419-5. [PubMed] [CrossRef] [Google Scholar]

468. Kishino A, Yanagida T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334: 74–76, 1988. doi: 10.1038/334074a0. [PubMed] [CrossRef] [Google Scholar]

469. Klitgaard H, Mantoni M, Schiaffino S, Ausoni S, Gorza L, Laurent-Winter C, Schnohr P, Saltin B. Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand 140: 41–54, 1990. doi: 10.1111/j.1748-1716.1990.tb08974.x. [PubMed] [CrossRef] [Google Scholar]

470. Knox CA, Kokmen E, Dyck PJ. Morphometric alteration of rat myelinated fibers with aging. J Neuropathol Exp Neurol 48: 119–139, 1989. doi: 10.1097/00005072-198903000-00001. [PubMed] [CrossRef] [Google Scholar]

471. Ko C-P, Chen L. Synaptic remodeling revealed by repeated in vivo observations and electron microscopy of identified frog neuromuscular junctions. J Neurosci 16: 1780–1790, 1996. doi: 10.1523/JNEUROSCI.16-05-01780.1996. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

472. Kobzik L, Reid MB, Bredt DS, Stamler JS. Nitric oxide in skeletal muscle. Nature 372: 546–548, 1994. doi: 10.1038/372546a0. [PubMed] [CrossRef] [Google Scholar]

473. Kohn RR. Aging and age-related disease: normal processes, in Relations between normal aging and disease (Johnson HA, editor). New York: Raven Press, 1985, p. 1–44. [Google Scholar]

474. Kolesar JE, Safdar A, Abadi A, MacNeil LG, Crane JD, Tarnopolsky MA, Kaufman BA. Defects in mitochondrial DNA replication and oxidative damage in muscle of mtDNA mutator mice. Free Radic Biol Med 75: 241–251, 2014. doi: 10.1016/j.freeradbiomed.2014.07.038. [PubMed] [CrossRef] [Google Scholar]

475. Komiya Y. Slowing with age of the rate of slow axonal flow in bifurcating axons of rat dorsal root ganglion cells. Brain Res 183: 477–480, 1980. doi: 10.1016/0006-8993(80)90484-9. [PubMed] [CrossRef] [Google Scholar]

476. Kong XC, Barzaghi P, Ruegg MA. Inhibition of synapse assembly in mammalian muscle in vivo by RNA interference. EMBO Rep 5: 183–188, 2004. doi: 10.1038/sj.embor.7400065. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

477. Korhonen MT, Cristea A, Alén M, Häkkinen K, Sipilä S, Mero A, Viitasalo JT, Larsson L, Suominen H. Aging, muscle fiber type, and contractile function in sprint-trained athletes. J Appl Physiol (1985) 101: 906–917, 2006. doi: 10.1152/japplphysiol.00299.2006. [PubMed] [CrossRef] [Google Scholar]

478. Korkusko OV, Sarkisov KG, Frajfel’d VE. Die alternsbesonderheiten des Systems der Mikrozirkulation in den Skelettmuskeln und ihre Rolle in der Arbeitsfähigkeit des Muskels beim Altern des Menschen. Z Alternsforsch 37: 147–153, 1982. [PubMed] [Google Scholar]

479. Kostyo JL. Rapid effects of growth hormone on amino acid transport and protein synthesis. Ann N Y Acad Sci 148, 2 Growth Hormon: 389–407, 1968. doi: 10.1111/j.1749-6632.1968.tb20365.x. [PubMed] [CrossRef] [Google Scholar]

480. Kottlors M, Kirschner J. Elevated satellite cell number in Duchenne muscular dystrophy. Cell Tissue Res 340: 541–548, 2010. doi: 10.1007/s00441-010-0976-6. [PubMed] [CrossRef] [Google Scholar]

481. Koubassova NA, Tsaturyan AK. Molecular mechanism of actin-myosin motor in muscle. Biochemistry (Mosc) 76: 1484–1506, 2011. doi: 10.1134/S0006297911130086. [PubMed] [CrossRef] [Google Scholar]

482. Kovanen V, Suominen H. Effects of age and life-time physical training on fibre composition of slow and fast skeletal muscle in rats. Pflugers Arch 408: 543–551, 1987. doi: 10.1007/BF00581154. [PubMed] [CrossRef] [Google Scholar]

483. Kovanen V, Suominen H, Peltonen L. Effects of aging and life-long physical training on collagen in slow and fast skeletal muscle in rats. A morphometric and immuno-histochemical study. Cell Tissue Res 248: 247–255, 1987. doi: 10.1007/BF00218191. [PubMed] [CrossRef] [Google Scholar]

485. Kron SJ, Spudich JA. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci USA 83: 6272–6276, 1986. doi: 10.1073/pnas.83.17.6272. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

486. Kudla AJ, Jones NC, Rosenthal RS, Arthur K, Clase KL, Olwin BB. The FGF receptor-1 tyrosine kinase domain regulates myogenesis but is not sufficient to stimulate proliferation. J Cell Biol 142: 241–250, 1998. doi: 10.1083/jcb.142.1.241. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

487. Kugelberg E, Edström L, Abbruzzese M. Mapping of motor units in experimentally reinnervated rat muscle. Interpretation of histochemical and atrophic fibre patterns in neurogenic lesions. J Neurol Neurosurg Psychiatry 33: 319–329, 1970. doi: 10.1136/jnnp.33.3.319. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

488. Kugelberg E, Lindegren B. Transmission and contraction fatigue of rat motor units in relation to succinate dehydrogenase activity of motor unit fibres. J Physiol 288: 285–300, 1979. [PMC free article] [PubMed] [Google Scholar]

489. Kugelberg E, Thornell LE. Contraction time, histochemical type, and terminal cisternae volume of rat motor units. Muscle Nerve 6: 149–153, 1983. doi: 10.1002/mus.880060211. [PubMed] [CrossRef] [Google Scholar]

490. Kuikka LK, Salminen S, Ouwehand A, Gueimonde M, Strandberg TE, Finne-Soveri UH, Sintonen H, Pitkälä KH. Inflammation markers and malnutrition as risk factors for infections and impaired health-related quality of life among older nursing home residents. J Am Med Dir Assoc 10: 348–353, 2009. doi: 10.1016/j.jamda.2009.02.007. [PubMed] [CrossRef] [Google Scholar]

491. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev 24: 2463–2479, 2010. doi: 10.1101/gad.1971610. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

492. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133: 1019–1031, 2008. doi: 10.1016/j.cell.2008.03.039. [PubMed] [CrossRef] [Google Scholar]

493. Kuilman T, Peeper DS. Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9: 81–94, 2009. doi: 10.1038/nrc2560. [PubMed] [CrossRef] [Google Scholar]

494. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309: 481–484, 2005. doi: 10.1126/science.1112125. [PubMed] [CrossRef] [Google Scholar]

495. Kulakowski SA, Parker SD, Personius KE. Reduced TrkB expression results in precocious age-like changes in neuromuscular structure, neurotransmission, and muscle function. J Appl Physiol (1985) 111: 844–852, 2011. doi: 10.1152/japplphysiol.00070.2011. [PubMed] [CrossRef] [Google Scholar]

496. Kuller LH. Serum levels of IL-6 and development of disability in older persons. J Am Geriatr Soc 47: 755–756, 1999. doi: 10.1111/j.1532-5415.1999.tb01604.x. [PubMed] [CrossRef] [Google Scholar]

497. Kumar A, Harris TE, Keller SR, Choi KM, Magnuson MA, Lawrence JC Jr. Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances Basal glycogen synthase activity. Mol Cell Biol 28: 61–70, 2008. doi: 10.1128/MCB.01405-07. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

498. Kuo YT, Shih PH, Kao SH, Yeh GC, Lee HM. Pyrroloquinoline Quinone Resists Denervation-Induced Skeletal Muscle Atrophy by Activating PGC-1α and Integrating Mitochondrial Electron Transport Chain Complexes. PLoS One 10: e0143600, 2015. doi: 10.1371/journal.pone.0143600. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

499. Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, Limbad C, Demaria M, Li P, Hubbard GB, Ikeno Y, Javors M, Desprez PY, Benz CC, Kapahi P, Nelson PS, Campisi J. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17: 1049–1061, 2015. doi: 10.1038/ncb3195. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

500. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127: 1109–1122, 2006. doi: 10.1016/j.cell.2006.11.013. [PubMed] [CrossRef] [Google Scholar]

501. Lakatta EG. Cardiovascular regulatory mechanisms in advanced age. Physiol Rev 73: 413–467, 1993. doi: 10.1152/physrev.1993.73.2.413. [PubMed] [CrossRef] [Google Scholar]

502. Lal S, Chithra P, Chandrakasan G. The possible relevance of autoxidative glycosylation in glucose mediated alterations of proteins: an in vitro study on myofibrillar proteins. Mol Cell Biochem 154: 95–100, 1996. doi: 10.1007/BF00226776. [PubMed] [CrossRef] [Google Scholar]

503. Lamberts SW, van den Beld AW, van der Lely AJ. The endocrinology of aging. Science 278: 419–424, 1997. doi: 10.1126/science.278.5337.419. [PubMed] [CrossRef] [Google Scholar]

504. Lamming DW, Mihaylova MM, Katajisto P, Baar EL, Yilmaz OH, Hutchins A, Gultekin Y, Gaither R, Sabatini DM. Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan. Aging Cell 13: 911–917, 2014. doi: 10.1111/acel.12256. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

505. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS, Guertin DA, Sabatini DM, Baur JA. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335: 1638–1643, 2012. doi: 10.1126/science.1215135. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

506. Landi F, Marzetti E, Liperoti R, Pahor M, Russo A, Martone AM, Colloca G, Capoluongo E, Bernabei R. Nonsteroidal anti-inflammatory drug (NSAID) use and sarcopenia in older people: results from the ilSIRENTE study. J Am Med Dir Assoc 14: 626.e9–626.e13, 2013. doi: 10.1016/j.jamda.2013.04.012. [PubMed] [CrossRef] [Google Scholar]

507. Landing BH, Dixon LG, Wells TR. Studies on isolated human skeletal muscle fibers, including a proposed pattern of nuclear distribution and a concept of nuclear territories. Hum Pathol 5: 441–461, 1974. doi: 10.1016/S0046-8177(74)80023-7. [PubMed] [CrossRef] [Google Scholar]

508. Lankford EB, Epstein ND, Fananapazir L, Sweeney HL. Abnormal contractile properties of muscle fibers expressing beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J Clin Invest 95: 1409–1414, 1995. doi: 10.1172/JCI117795. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

509. Lanza IR, Befroy DE, Kent-Braun JA. Age-related changes in ATP-producing pathways in human skeletal muscle in vivo. J Appl Physiol (1985) 99: 1736–1744, 2005. doi: 10.1152/japplphysiol.00566.2005. [PubMed] [CrossRef] [Google Scholar]

510. Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnell JP, Nair KS. Endurance exercise as a countermeasure for aging. Diabetes 57: 2933–2942, 2008. doi: 10.2337/db08-0349. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

511. Lanza IR, Zabielski P, Klaus KA, Morse DM, Heppelmann CJ, Bergen HR III, Dasari S, Walrand S, Short KR, Johnson ML, Robinson MM, Schimke JM, Jakaitis DR, Asmann YW, Sun Z, Nair KS. Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 16: 777–788, 2012. doi: 10.1016/j.cmet.2012.11.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

512. Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M. Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 11: 867–880, 2015. doi: 10.1080/15548627.2015.1034410. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

513. Laplante M, Sabatini DM. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 126: 1713–1719, 2013. doi: 10.1242/jcs.125773. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

514. Larsson L. Ageing in mammalian skeletal muscles. New York: Praeger, 1982, p. 60–97. [Google Scholar]

515. Larsson L. Histochemical characteristics of human skeletal muscle during aging. Acta Physiol Scand 117: 469–471, 1983. doi: 10.1111/j.1748-1716.1983.tb00024.x. [PubMed] [CrossRef] [Google Scholar]

516. Larsson L. Is the motor unit uniform? Acta Physiol Scand 144: 143–154, 1992. doi: 10.1111/j.1748-1716.1992.tb09279.x. [PubMed] [CrossRef] [Google Scholar]

517. Larsson L. Physical training effects on muscle morphology in sedentary males at different ages. Med Sci Sports Exerc 14: 203–206, 1982. doi: 10.1249/00005768-198203000-00009. [PubMed] [CrossRef] [Google Scholar]

518. Larsson L. A technique for measuring contractile properties in single chemically skinned human muscle fibres obtained from percutaneous biopsies. J Neurol Sci 98: 430, 1990. [Google Scholar]

519. Larsson L, Ansved T. Effects of age on the motor unit. A study on single motor units in the rat. Ann N Y Acad Sci 515, 1 Central Deter: 303–313, 1988. doi: 10.1111/j.1749-6632.1988.tb33000.x. [PubMed] [CrossRef] [Google Scholar]

520. Larsson L, Ansved T. Effects of ageing on the motor unit. Prog Neurobiol 45: 397–458, 1995. doi: 10.1016/0301-0082(95)98601-Z. [PubMed] [CrossRef] [Google Scholar]

521. Larsson L, Ansved T, Edström L, Gorza L, Schiaffino S. Effects of age on physiological, immunohistochemical and biochemical properties of fast-twitch single motor units in the rat. J Physiol 443: 257–275, 1991. doi: 10.1113/jphysiol.1991.sp018833. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

522. Larsson L, Biral D, Campione M, Schiaffino S. An age-related type IIB to IIX myosin heavy chain switching in rat skeletal muscle. Acta Physiol Scand 147: 227–234, 1993. doi: 10.1111/j.1748-1716.1993.tb09493.x. [PubMed] [CrossRef] [Google Scholar]

523. Larsson L, Edström L. Effects of age on enzyme-histochemical fibre spectra and contractile properties of fast- and slow-twitch skeletal muscles in the rat. J Neurol Sci 76: 69–89, 1986. doi: 10.1016/0022-510X(86)90143-7. [PubMed] [CrossRef] [Google Scholar]

524. Larsson L, Edström L, Lindegren B, Gorza L, Schiaffino S. MHC composition and enzyme-histochemical and physiological properties of a novel fast-twitch motor unit type. Am J Physiol 261: C93–C101, 1991. doi: 10.1152/ajpcell.1991.261.1.C93. [PubMed] [CrossRef] [Google Scholar]

525. Larsson L, Grimby G, Karlsson J. Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol Respir Environ Exerc Physiol 46: 451–456, 1979. [PubMed] [Google Scholar]

526. Larsson L, Höök P, Pircher P. Regulation of human muscle contraction at the cellular and molecular levels. Ital J Neurol Sci 20: 413–422, 1999. doi: 10.1007/s100720050061. [PubMed] [CrossRef] [Google Scholar]

527. Larsson L, Li X, Berg HE, Frontera WR. Effects of removal of weight-bearing function on contractility and myosin isoform composition in single human skeletal muscle cells. Pflugers Arch 432: 320–328, 1996. doi: 10.1007/s004240050139. [PubMed] [CrossRef] [Google Scholar]

528. Larsson L, Li X, Edström L, Eriksson LI, Zackrisson H, Argentini C, Schiaffino S. Acute quadriplegia and loss of muscle myosin in patients treated with nondepolarizing neuromuscular blocking agents and corticosteroids: mechanisms at the cellular and molecular levels [see comments]. Crit Care Med 28: 34–45, 2000. doi: 10.1097/00003246-200001000-00006. [PubMed] [CrossRef] [Google Scholar]

529. Larsson L, Li X, Frontera WR. Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am J Physiol 272: C638–C649, 1997. doi: 10.1152/ajpcell.1997.272.2.C638. [PubMed] [CrossRef] [Google Scholar]

530. Larsson L, Li X, Muller U, Yu F. Myosin isoform composition and maximum velocity of unloaded shortening in single skeletal muscle cells from man and rat: Specific reference to ageing and thyroid hormone treatment. J Muscle Res Cell Motil 17: 129–130, 1996. [Google Scholar]

531. Larsson L, Li X, Tollbäck A, Grimby L. Contractile properties in single muscle fibres from chronically overused motor units in relation to motoneuron firing properties in prior polio patients. J Neurol Sci 132: 182–192, 1995. doi: 10.1016/0022-510X(95)00138-R. [PubMed] [CrossRef] [Google Scholar]

532. Larsson L, Li X, Yu F, Degens H. Age-related changes in contractile properties and expression of myosin isoforms in single skeletal muscle cells. Muscle Nerve Suppl 20, Suppl 5: S74–S78, 1997. doi: 10.1002/(SICI)1097-4598(1997)5+<74::AID-MUS18>3.0.CO;2-Z. [PubMed] [CrossRef] [Google Scholar]

533. Larsson L, Li X, Berg HE, Frontera WR. Effects of removal of weight-bearing function on contractility and myosin isoform composition in single human skeletal muscle cells. Pflugers Arch 432: 320–328, 1996. doi: 10.1007/s004240050139. [PubMed] [CrossRef] [Google Scholar]

534. Larsson L, Moss RL. Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol 472: 595–614, 1993. doi: 10.1113/jphysiol.1993.sp019964. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

535. Larsson L, Müller U, Li X, Schiaffino S. Thyroid hormone regulation of myosin heavy chain isoform composition in young and old rats, with special reference to IIX myosin. Acta Physiol Scand 153: 109–116, 1995. doi: 10.1111/j.1748-1716.1995.tb09841.x. [PubMed] [CrossRef] [Google Scholar]

536. Larsson L, Roland A. [Drug induced tetraparesis and loss of myosin. Mild types are probably overlooked]. Lakartidningen 93: 2249–2254, 1996. [PubMed] [Google Scholar]

537. Larsson L, Salviati G. Effects of age on calcium transport activity of sarcoplasmic reticulum in fast- and slow-twitch rat muscle fibres. J Physiol 419: 253–264, 1989. doi: 10.1113/jphysiol.1989.sp017872. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

538. Larsson L, Salviati G. A technique for studies of the contractile apparatus in single human muscle fibre segments obtained by percutaneous biopsy. Acta Physiol Scand 146: 485–495, 1992. doi: 10.1111/j.1748-1716.1992.tb09450.x. [PubMed] [CrossRef] [Google Scholar]

539. Larsson L, Sjödin B, Karlsson J. Histochemical and biochemical changes in human skeletal muscle with age in sedentary males, age 22–65 years. Acta Physiol Scand 103: 31–39, 1978. doi: 10.1111/j.1748-1716.1978.tb06187.x. [PubMed] [CrossRef] [Google Scholar]

540. Larsson L, Yu F. Gender-related differences in the regulatory influence of thyroid hormone on the expression of myosin isoforms in young and old rats. Acta Physiol Scand 159: 81–89, 1997. doi: 10.1046/j.1365-201X.1997.559328000.x. [PubMed] [CrossRef] [Google Scholar]

541. Laskowski MB, Olson WH, Dettbarn WD. Initial ultrastructural abnormalities at the motor end plate produced by a cholinesterase inhibitor. Exp Neurol 57: 13–33, 1977. doi: 10.1016/0014-4886(77)90041-3. [PubMed] [CrossRef] [Google Scholar]

542. Lass A, Kwong L, Sohal RS. Mitochondrial coenzyme Q content and aging. Biofactors 9: 199–205, 1999. doi: 10.1002/biof.5520090215. [PubMed] [CrossRef] [Google Scholar]

543. LeBrasseur NK, Tchkonia T, Kirkland JL. Cellular Senescence and the Biology of Aging, Disease, and Frailty. Nestle Nutr Inst Workshop Ser 83: 11–18, 2015. doi: 10.1159/000382054. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

544. Leduc-Gaudet JP, Auger MJ, St Jean Pelletier F, Gouspillou G. Towards a better understanding of the role played by mitochondrial dynamics and morphology in skeletal muscle atrophy. J Physiol 593: 2993–2994, 2015. doi: 10.1113/JP270736. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

545. Leduc-Gaudet JP, Picard M, St-Jean Pelletier F, Sgarioto N, Auger MJ, Vallée J, Robitaille R, St-Pierre DH, Gouspillou G. Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice. Oncotarget 6: 17923–17937, 2015. doi: 10.18632/oncotarget.4235. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

546. Lee AS, Anderson JE, Joya JE, Head SI, Pather N, Kee AJ, Gunning PW, Hardeman EC. Aged skeletal muscle retains the ability to fully regenerate functional architecture. BioArchitecture 3: 25–37, 2013. doi: 10.4161/bioa.24966. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

547. Lee CK, Klopp RG, Weindruch R, Prolla TA. Gene expression profile of aging and its retardation by caloric restriction. Science 285: 1390–1393, 1999. doi: 10.1126/science.285.5432.1390. [PubMed] [CrossRef] [Google Scholar]

548. Lee WJ, McClung J, Hand GA, Carson JA. Overload-induced androgen receptor expression in the aged rat hindlimb receiving nandrolone decanoate. J Appl Physiol (1985) 94: 1153–1161, 2003. doi: 10.1152/japplphysiol.00822.2002. [PubMed] [CrossRef] [Google Scholar]

549. Lee YI, Li Y, Mikesh M, Smith I, Nave KA, Schwab MH, Thompson WJ. Neuregulin1 displayed on motor axons regulates terminal Schwann cell-mediated synapse elimination at developing neuromuscular junctions. Proc Natl Acad Sci USA 113: E479–E487, 2016. doi: 10.1073/pnas.1519156113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

550. Lehman TD, Ortwerth BJ. Inhibitors of advanced glycation end product-associated protein cross-linking. Biochim Biophys Acta 1535: 110–119, 2001. doi: 10.1016/S0925-4439(00)00087-9. [PubMed] [CrossRef] [Google Scholar]

551. Leiter JR, Upadhaya R, Anderson JE. Nitric oxide and voluntary exercise together promote quadriceps hypertrophy and increase vascular density in female 18-mo-old mice. Am J Physiol Cell Physiol 302: C1306–C1315, 2012. doi: 10.1152/ajpcell.00305.2011. [PubMed] [CrossRef] [Google Scholar]

552. Lenhare L, Crisol BM, Silva VRR, Katashima CK, Cordeiro AV, Pereira KD, Luchessi AD, da Silva ASR, Cintra DE, Moura LP, Pauli JR, Ropelle ER. Physical exercise increases Sestrin 2 protein levels and induces autophagy in the skeletal muscle of old mice. Exp Gerontol 97: 17–21, 2017. doi: 10.1016/j.exger.2017.07.009. [PubMed] [CrossRef] [Google Scholar]

553. Lewis SE, Kelly FJ, Goldspink DF. Pre- and post-natal growth and protein turnover in smooth muscle, heart and slow- and fast-twitch skeletal muscles of the rat. Biochem J 217: 517–526, 1984. doi: 10.1042/bj2170517. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

554. Lexell J, Henriksson-Larsén K, Winblad B, Sjöström M. Distribution of different fiber types in human skeletal muscles: effects of aging studied in whole muscle cross sections. Muscle Nerve 6: 588–595, 1983. doi: 10.1002/mus.880060809. [PubMed] [CrossRef] [Google Scholar]

555. Lexell J, Taylor CC, Sjöström M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84: 275–294, 1988. doi: 10.1016/0022-510X(88)90132-3. [PubMed] [CrossRef] [Google Scholar]

556. Lezza AM, Boffoli D, Scacco S, Cantatore P, Gadaleta MN. Correlation between mitochondrial DNA 4977-bp deletion and respiratory chain enzyme activities in aging human skeletal muscles. Biochem Biophys Res Commun 205: 772–779, 1994. doi: 10.1006/bbrc.1994.2732. [PubMed] [CrossRef] [Google Scholar]

557. Li C, White SH, Warren LK, Wohlgemuth SE. Skeletal muscle from aged American Quarter Horses shows impairments in mitochondrial biogenesis and expression of autophagy markers. Exp Gerontol 102: 19–27, 2018. doi: 10.1016/j.exger.2017.11.022. [PubMed] [CrossRef] [Google Scholar]

558. Li M, Larsson L. Force-generating capacity of human myosin isoforms extracted from single muscle fibre segments. J Physiol 588: 5105–5114, 2010. doi: 10.1113/jphysiol.2010.199067. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

559. Li M, Li M, Marx JO, Larsson L. There is no slowing of motility speed with increased body size in rat, human, horse and rhinoceros independent on temperature and skeletal muscle myosin isoform. Acta Physiol (Oxf) 202: 671–681, 2011. doi: 10.1111/j.1748-1716.2011.02292.x. [PubMed] [CrossRef] [Google Scholar]

560. Li M, Lionikas A, Yu F, Tajsharghi H, Oldfors A, Larsson L. Muscle cell and motor protein function in patients with a IIa myosin missense mutation (Glu-706 to Lys). Neuromuscul Disord 16: 782–791, 2006. doi: 10.1016/j.nmd.2006.07.023. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

561. Li M, Ogilvie H, Ochala J, Artemenko K, Iwamoto H, Yagi N, Bergquist J, Larsson L. Aberrant post-translational modifications compromise human myosin motor function in old age. Aging Cell 14: 228–235, 2015. doi: 10.1111/acel.12307. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

562. Li P, Meng X, Bian H, Burns N, Zhao KS, Song R. Activation of sirtuin 1/3 improves vascular hyporeactivity in severe hemorrhagic shock by alleviation of mitochondrial damage. Oncotarget 6: 36998–37011, 2015. [PMC free article] [PubMed] [Google Scholar]

563. Li X, Larsson L. Maximum shortening velocity and myosin isoforms in single muscle fibers from young and old rats. Am J Physiol 270: C352–C360, 1996. doi: 10.1152/ajpcell.1996.270.1.C352. [PubMed] [CrossRef] [Google Scholar]

564. Li Y, Lee Y, Thompson WJ. Changes in aging mouse neuromuscular junctions are explained by degeneration and regeneration of muscle fiber segments at the synapse. J Neurosci 31: 14910–14919, 2011. doi: 10.1523/JNEUROSCI.3590-11.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

565. Li Y, Thompson WJ. Nerve terminal growth remodels neuromuscular synapses in mice following regeneration of the postsynaptic muscle fiber. J Neurosci 31: 13191–13203, 2011. doi: 10.1523/JNEUROSCI.2953-11.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

566. Li YP, Chen Y, John J, Moylan J, Jin B, Mann DL, Reid MB. TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J 19: 362–370, 2005. doi: 10.1096/fj.04-2364com. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

567. Lichtman JW, Magrassi L, Purves D. Visualization of neuromuscular junctions over periods of several months in living mice. J Neurosci 7: 1215–1222, 1987. doi: 10.1523/JNEUROSCI.07-04-01215.1987. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

568. Lidell EGT, Sherrington CS. Recruitment and some factors of reflex inhibition. Proc R Soc Lond B Biol Sci 97: 488–518, 1925. doi: 10.1098/rspb.1925.0016. [CrossRef] [Google Scholar]

569. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418: 797–801, 2002. doi: 10.1038/nature00904. [PubMed] [CrossRef] [Google Scholar]

570. Lin S, Xing H, Zang T, Ruan X, Wo L, He M. Sirtuins in mitochondrial stress: Indispensable helpers behind the scenes. Ageing Res Rev 44: 22–32, 2018. doi: 10.1016/j.arr.2018.03.006. [PubMed] [CrossRef] [Google Scholar]

571. Lingle CJ, Steinbach JH. Neuromuscular blocking agents. Int Anesthesiol Clin 26: 288–301, 1988. doi: 10.1097/00004311-198802640-00007. [PubMed] [CrossRef] [Google Scholar]

572. Lionikas A, Blizard DA, Gerhard GS, Vandenbergh DJ, Stout JT, Vogler GP, McClearn GE, Larsson L. Genetic determinants of weight of fast- and slow-twitch skeletal muscle in 500-day-old mice of the C57BL/6J and DBA/2J lineage. Physiol Genomics 21: 184–192, 2005. doi: 10.1152/physiolgenomics.00209.2004. [PubMed] [CrossRef] [Google Scholar]

573. Lionikas A, Blizard DA, Vandenbergh DJ, Glover MG, Stout JT, Vogler GP, McClearn GE, Larsson L. Genetic architecture of fast- and slow-twitch skeletal muscle weight in 200-day-old mice of the C57BL/6J and DBA/2J lineage. Physiol Genomics 16: 141–152, 2003. doi: 10.1152/physiolgenomics.00103.2003. [PubMed] [CrossRef] [Google Scholar]

574. Lionikas A, Blizard DA, Vandenbergh DJ, Stout JT, Vogler GP, McClearn GE, Larsson L. Genetic determinants of weight of fast- and slow-twitch skeletal muscles in old mice. Mamm Genome 17: 615–628, 2006. doi: 10.1007/s00335-005-0177-x. [PubMed] [CrossRef] [Google Scholar]

575. Liu G, Mac Gabhann F, Popel AS. Effects of fiber type and size on the heterogeneity of oxygen distribution in exercising skeletal muscle. PLoS One 7: e44375, 2012. doi: 10.1371/journal.pone.0044375. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

576. Liu J, Höglund A-S, Karlsson Edlund P, Lindblad J, Qaisar R, Bengtsson E, Larsson L. Myonuclear domain size and myosin isoform expression in muscle fibers from mammals representing a 100,000-fold difference in body size. Exp Physiol, 2008. [PubMed] [Google Scholar]

577. Liu JX, Höglund AS, Karlsson P, Lindblad J, Qaisar R, Aare S, Bengtsson E, Larsson L. Myonuclear domain size and myosin isoform expression in muscle fibres from mammals representing a 100,000-fold difference in body size. Exp Physiol 94: 117–129, 2009. doi: 10.1113/expphysiol.2008.043877. [PubMed] [CrossRef] [Google Scholar]

578. Liu W, Klose A, Forman S, Paris ND, Wei-LaPierre L, Cortés-Lopéz M, Tan A, Flaherty M, Miura P, Dirksen RT, Chakkalakal JV. Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration. eLife 6: e26464, 2017. doi: 10.7554/eLife.26464. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

579. Liu VW, Zhang C, Nagley P. Mutations in mitochondrial DNA accumulate differentially in three different human tissues during ageing. Nucleic Acids Res 26: 1268–1275, 1998. doi: 10.1093/nar/26.5.1268. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

580. Lo Verso F, Carnio S, Vainshtein A, Sandri M. Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity. Autophagy 10: 1883–1894, 2014. doi: 10.4161/auto.32154. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

581. Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, Sinha M, Dall’Osso C, Khong D, Shadrach JL, Miller CM, Singer BS, Stewart A, Psychogios N, Gerszten RE, Hartigan AJ, Kim MJ, Serwold T, Wagers AJ, Lee RT. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153: 828–839, 2013. doi: 10.1016/j.cell.2013.04.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

582. Lokireddy S, Wijesoma IW, Teng S, Bonala S, Gluckman PD, McFarlane C, Sharma M, Kambadur R. The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli [Retraction in Cell Metab 22: 1090, 2015.]. Cell Metab 16: 613–624, 2012. doi: 10.1016/j.cmet.2012.10.005. [PubMed] [CrossRef] [Google Scholar]

583. López-Martín JM, Salviati L, Trevisson E, Montini G, DiMauro S, Quinzii C, Hirano M, Rodriguez-Hernandez A, Cordero MD, Sánchez-Alcázar JA, Santos-Ocaña C, Navas P. Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis. Hum Mol Genet 16: 1091–1097, 2007. doi: 10.1093/hmg/ddm058. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

584. López S, Miró O, Martínez E, Pedrol E, Rodríguez-Santiago B, Milinkovic A, Soler A, García-Viejo MA, Nunes V, Casademont J, Gatell JM, Cardellach F. Mitochondrial effects of antiretroviral therapies in asymptomatic patients. Antivir Ther 9: 47–55, 2004. [PubMed] [Google Scholar]

585. Lourenço dos Santos S, Baraibar MA, Lundberg S, Eeg-Olofsson O, Larsson L, Friguet B. Oxidative proteome alterations during skeletal muscle ageing. Redox Biol 5: 267–274, 2015. doi: 10.1016/j.redox.2015.05.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

586. Lowe DA, Surek JT, Thomas DD, Thompson LV. Electron paramagnetic resonance reveals age-related myosin structural changes in rat skeletal muscle fibers. Am J Physiol Cell Physiol 280: C540–C547, 2001. doi: 10.1152/ajpcell.2001.280.3.C540. [PubMed] [CrossRef] [Google Scholar]

587. Lowe DA, Warren GL, Snow LM, Thompson LV, Thomas DD. Muscle activity and aging affect myosin structural distribution and force generation in rat fibers. J Appl Physiol (1985) 96: 498–506, 2004. doi: 10.1152/japplphysiol.00842.2003. [PubMed] [CrossRef] [Google Scholar]

588. Lowey S, Waller GS, Trybus KM. Function of skeletal muscle myosin heavy and light chain isoforms by an in vitro motility assay. J Biol Chem 268: 20414–20418, 1993. [PubMed] [Google Scholar]

589. Lowey S, Waller GS, Trybus KM. Skeletal muscle myosin light chains are essential for physiological speeds of shortening. Nature 365: 454–456, 1993. doi: 10.1038/365454a0. [PubMed] [CrossRef] [Google Scholar]

590. Lu J, Tapia JC, White OL, Lichtman JW. The interscutularis muscle connectome. PLoS Biol 7: e32, 2009. [PMC free article] [PubMed] [Google Scholar]

591. Lushaj EB, Johnson JK, McKenzie D, Aiken JM. Sarcopenia accelerates at advanced ages in Fisher 344xBrown Norway rats. J Gerontol A Biol Sci Med Sci 63: 921–927, 2008. doi: 10.1093/gerona/63.9.921. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

592. Lyons CN, Mathieu-Costello O, Moyes CD. Regulation of skeletal muscle mitochondrial content during aging. J Gerontol A Biol Sci Med Sci 61: 3–13, 2006. doi: 10.1093/gerona/61.1.3. [PubMed] [CrossRef] [Google Scholar]

593. Lyons PR, Slater CR. Structure and function of the neuromuscular junction in young adult mdx mice. J Neurocytol 20: 969–981, 1991. doi: 10.1007/BF01187915. [PubMed] [CrossRef] [Google Scholar]

594. Madeo F, Zimmermann A, Maiuri MC, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest 125: 85–93, 2015. doi: 10.1172/JCI73946. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

595. Magrassi L, Purves D, Lichtman JW. Fluorescent probes that stain living nerve terminals. J Neurosci 7: 1207–1214, 1987. doi: 10.1523/JNEUROSCI.07-04-01207.1987. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

596. Mahoney J, Sager M, Dunham NC, Johnson J. Risk of falls after hospital discharge. J Am Geriatr Soc 42: 269–274, 1994. doi: 10.1111/j.1532-5415.1994.tb01750.x. [PubMed] [CrossRef] [Google Scholar]

597. Mahoney JE, Sager MA, Jalaluddin M. Use of an ambulation assistive device predicts functional decline associated with hospitalization. J Gerontol A Biol Sci Med Sci 54: M83–M88, 1999. doi: 10.1093/gerona/54.2.M83. [PubMed] [CrossRef] [Google Scholar]

598. Maier F, Bornemann A. Comparison of the muscle fiber diameter and satellite cell frequency in human muscle biopsies. Muscle Nerve 22: 578–583, 1999. doi: 10.1002/(SICI)1097-4598(199905)22:5<578::AID-MUS5>3.0.CO;2-T. [PubMed] [CrossRef] [Google Scholar]

599. Malena A, Pantic B, Borgia D, Sgarbi G, Solaini G, Holt IJ, Spinazzola A, Perissinotto E, Sandri M, Baracca A, Vergani L. Mitochondrial quality control: Cell-type-dependent responses to pathological mutant mitochondrial DNA. Autophagy 12: 2098–2112, 2016. doi: 10.1080/15548627.2016.1226734. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

600. Maltin CA, Delday MI, Baillie AG, Grubb DA, Garlick PJ. Fiber-type composition of nine rat muscles. I. Changes during the first year of life. Am J Physiol 257: E823–E827, 1989. [PubMed] [Google Scholar]

601. Mammucari C, Gherardi G, Zamparo I, Raffaello A, Boncompagni S, Chemello F, Cagnin S, Braga A, Zanin S, Pallafacchina G, Zentilin L, Sandri M, De Stefani D, Protasi F, Lanfranchi G, Rizzuto R. The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo. Cell Reports 10: 1269–1279, 2015. doi: 10.1016/j.celrep.2015.01.056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

602. Man LL, Liu F, Wang YJ, Song HH, Xu HB, Zhu ZW, Zhang Q, Wang YJ. The HMGB1 signaling pathway activates the inflammatory response in Schwann cells. Neural Regen Res 10: 1706–1712, 2015. doi: 10.4103/1673-5374.167773. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

603. Mancuso M, Filosto M, Bonilla E, Hirano M, Shanske S, Vu TH, DiMauro S. Mitochondrial myopathy of childhood associated with mitochondrial DNA depletion and a homozygous mutation (T77M) in the TK2 gene. Arch Neurol 60: 1007–1009, 2003. doi: 10.1001/archneur.60.7.1007. [PubMed] [CrossRef] [Google Scholar]

604. Mansueto G, Armani A, Viscomi C, D’Orsi L, De Cegli R, Polishchuk EV, Lamperti C, Di Meo I, Romanello V, Marchet S, Saha PK, Zong H, Blaauw B, Solagna F, Tezze C, Grumati P, Bonaldo P, Pessin JE, Zeviani M, Sandri M, Ballabio A. Transcription Factor EB Controls Metabolic Flexibility during Exercise. Cell Metab 25: 182–196, 2017. doi: 10.1016/j.cmet.2016.11.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

605. Manta P, Vassilopoulos D, Spengos M. Nucleo-cytoplasmic ratio in ageing skeletal muscle. Eur Arch Psychiatry Neurol Sci 236: 235–236, 1987. doi: 10.1007/BF00383854. [PubMed] [CrossRef] [Google Scholar]

606. Marcus R, Butterfield G, Holloway L, Gilliland L, Baylink DJ, Hintz RL, Sherman BM. Effects of short term administration of recombinant human growth hormone to elderly people. J Clin Endocrinol Metab 70: 519–527, 1990. doi: 10.1210/jcem-70-2-519. [PubMed] [CrossRef] [Google Scholar]

606a. Marjoribanks J, Farquhar C, Roberts H, Lethaby A, Lee J. Long term hormone therapy for perimenopausal and postmenopausal women. Cochrane Database Syst Rev. 1: CD004143, 2017. [PMC free article] [PubMed] [Google Scholar]

607. Markofski MM, Dickinson JM, Drummond MJ, Fry CS, Fujita S, Gundermann DM, Glynn EL, Jennings K, Paddon-Jones D, Reidy PT, Sheffield-Moore M, Timmerman KL, Rasmussen BB, Volpi E. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp Gerontol 65: 1–7, 2015. doi: 10.1016/j.exger.2015.02.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

608. Marques MJ, Conchello JA, Lichtman JW. From plaque to pretzel: fold formation and acetylcholine receptor loss at the developing neuromuscular junction. J Neurosci 20: 3663–3675, 2000. doi: 10.1523/JNEUROSCI.20-10-03663.2000. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

609. Martin TP, Bodine-Fowler S, Edgerton VR. Coordination of electromechanical and metabolic properties of cat soleus motor units. Am J Physiol 255: C684–C693, 1988. doi: 10.1152/ajpcell.1988.255.5.C684. [PubMed] [CrossRef] [Google Scholar]

610. Martin TP, Bodine-Fowler S, Roy RR, Eldred E, Edgerton VR. Metabolic and fiber size properties of cat tibialis anterior motor units. Am J Physiol 255: C43–C50, 1988. doi: 10.1152/ajpcell.1988.255.1.C43. [PubMed] [CrossRef] [Google Scholar]

611. Martinez-Lopez N, Tarabra E, Toledo M, Garcia-Macia M, Sahu S, Coletto L, Batista-Gonzalez A, Barzilai N, Pessin JE, Schwartz GJ, Kersten S, Singh R. System-wide Benefits of Intermeal Fasting by Autophagy. Cell Metab 26: 856–871.e5, 2017. doi: 10.1016/j.cmet.2017.09.020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

612. Martínez DE. Mortality patterns suggest lack of senescence in hydra. Exp Gerontol 33: 217–225, 1998. doi: 10.1016/S0531-5565(97)00113-7. [PubMed] [CrossRef] [Google Scholar]

613. Martinsson T, Oldfors A, Darin N, Berg K, Tajsharghi H, Kyllerman M, Wahlstrom J. Autosomal dominant myopathy: missense mutation (Glu-706 --> Lys) in the myosin heavy chain IIa gene. Proc Natl Acad Sci USA 97: 14614–14619, 2000. doi: 10.1073/pnas.250289597. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

614. Marzetti E, Calvani R, Cesari M, Buford TW, Lorenzi M, Behnke BJ, Leeuwenburgh C. Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Int J Biochem Cell Biol 45: 2288–2301, 2013. doi: 10.1016/j.biocel.2013.06.024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

615. Marzetti E, Leeuwenburgh C. Skeletal muscle apoptosis, sarcopenia and frailty at old age. Exp Gerontol 41: 1234–1238, 2006. doi: 10.1016/j.exger.2006.08.011. [PubMed] [CrossRef] [Google Scholar]

616. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M. Autophagy is required to maintain muscle mass. Cell Metab 10: 507–515, 2009. doi: 10.1016/j.cmet.2009.10.008. [PubMed] [CrossRef] [Google Scholar]

618. Mathieu-Costello O, Agey PJ, Quintana ES, Rousey K, Wu L, Bernstein MH. Fiber capillarization and ultrastructure of pigeon pectoralis muscle after cold acclimation. J Exp Biol 201: 3211–3220, 1998. [PubMed] [Google Scholar]

619. Mathieu-Costello O, Ju Y, Trejo-Morales M, Cui L. Greater capillary-fiber interface per fiber mitochondrial volume in skeletal muscles of old rats. J Appl Physiol (1985) 99: 281–289, 2005. doi: 10.1152/japplphysiol.00750.2004. [PubMed] [CrossRef] [Google Scholar]

620. McCann CM, Nguyen QT, Santo Neto H, Lichtman JW. Rapid synapse elimination after postsynaptic protein synthesis inhibition in vivo. J Neurosci 27: 6064–6067, 2007. doi: 10.1523/JNEUROSCI.0627-07.2007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

621. McComas AJ, Sica RE, Campbell MJ. “Sick” motoneurones. A unifying concept of muscle disease. Lancet 297: 321–325, 1971. doi: 10.1016/S0140-6736(71)91045-2. [PubMed] [CrossRef] [Google Scholar]

622. McCully KK, Fielding RA, Evans WJ, Leigh JS Jr, Posner JD. Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles. J Appl Physiol (1985) 75: 813–819, 1993. doi: 10.1152/jappl.1993.75.2.813. [PubMed] [CrossRef] [Google Scholar]

623. McDonagh MJ. Mechanical properties of muscles from Xenopus borealis following maintenance in organ culture. Comp Biochem Physiol A 77: 377–382, 1984. doi: 10.1016/0300-9629(84)90077-X. [PubMed] [CrossRef] [Google Scholar]

624. McKiernan SH, Bua E, McGorray J, Aiken J. Early-onset calorie restriction conserves fiber number in aging rat skeletal muscle. FASEB J 18: 580–581, 2004. doi: 10.1096/fj.03-0667fje. [PubMed] [CrossRef] [Google Scholar]

625. McMahon TA. Muscles, Reflexes, and Locomotion. Princeton, NJ: Princeton University Press, 1984. [Google Scholar]

626. McMartin DN, O’Connor JA Jr. Effect of age on axoplasmic transport of cholinesterase in rat sciatic nerves. Mech Ageing Dev 10: 241–248, 1979. doi: 10.1016/0047-6374(79)90038-1. [PubMed] [CrossRef] [Google Scholar]

627. McMullen CA, Ferry AL, Gamboa JL, Andrade FH, Dupont-Versteegden EE. Age-related changes of cell death pathways in rat extraocular muscle. Exp Gerontol 44: 420–425, 2009. doi: 10.1016/j.exger.2009.03.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

628. McPhee JS, French DP, Jackson D, Nazroo J, Pendleton N, Degens H. Physical activity in older age: perspectives for healthy ageing and frailty. Biogerontology 17: 567–580, 2016. doi: 10.1007/s10522-016-9641-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

629. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83–90, 1997. doi: 10.1038/387083a0. [PubMed] [CrossRef] [Google Scholar]

630. McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94: 12457–12461, 1997. doi: 10.1073/pnas.94.23.12457. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

631. Meissner C, Bruse P, Oehmichen M. Tissue-specific deletion patterns of the mitochondrial genome with advancing age. Exp Gerontol 41: 518–524, 2006. doi: 10.1016/j.exger.2006.03.010. [PubMed] [CrossRef] [Google Scholar]

632. Mellado W, Slebe JC, Maccioni RB. Tubulin carbamoylation. Functional amino groups in microtubule assembly. Biochem J 203: 675–681, 1982. doi: 10.1042/bj2030675. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

633. Menshikova EV, Ritov VB, Dube JJ, Amati F, Stefanovic-Racic M, Toledo FGS, Coen PM, Goodpaster BH. Calorie Restriction-induced Weight Loss and Exercise Have Differential Effects on Skeletal Muscle Mitochondria Despite Similar Effects on Insulin Sensitivity. J Gerontol A Biol Sci Med Sci 73: 81–87, 2018. doi: 10.1093/gerona/glw328. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

634. Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, Cesari M, Nourhashemi F. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc 14: 877–882, 2013. doi: 10.1016/j.jamda.2013.05.009. [PubMed] [CrossRef] [Google Scholar]

635. Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL, Blaauw B, DePinho RA, Sandri M. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 6: 6670, 2015. doi: 10.1038/ncomms7670. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

636. Milkiewicz M, Brown MD, Egginton S, Hudlicka O. Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo. Microcirculation 8: 229–241, 2001. doi: 10.1111/j.1549-8719.2001.tb00172.x. [PubMed] [CrossRef] [Google Scholar]

636a. Miller SL, Wolfe RR. The danger of weight loss in the elderly. J Nutr Health Aging 12: 487–491, 2008. [PubMed] [Google Scholar]

637. Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, Redpath P, Migaud ME, Apte RS, Uchida K, Yoshino J, Imai SI. Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell Metab 24: 795–806, 2016. doi: 10.1016/j.cmet.2016.09.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

638. Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, Nojima A, Nabetani A, Oike Y, Matsubara H, Ishikawa F, Komuro I. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15: 1082–1087, 2009. doi: 10.1038/nm.2014. [PubMed] [CrossRef] [Google Scholar]

639. Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med 335: 1897–1905, 1996. doi: 10.1056/NEJM199612193352507. [PubMed] [CrossRef] [Google Scholar]

640. Mito T, Ishizaki H, Suzuki M, Morishima H, Ota A, Ishikawa K, Nakada K, Maeno A, Shiroishi T, Hayashi J. Transmitochondrial mito-miceΔ and mtDNA mutator mice, but not aged mice, share the same spectrum of musculoskeletal disorders. Biochem Biophys Res Commun 456: 933–937, 2015. doi: 10.1016/j.bbrc.2014.12.009. [PubMed] [CrossRef] [Google Scholar]

641. Mittal KR, Logmani FH. Age-related reduction in 8th cervical ventral nerve root myelinated fiber diameters and numbers in man. J Gerontol 42: 8–10, 1987. doi: 10.1093/geronj/42.1.8. [PubMed] [CrossRef] [Google Scholar]

642. Miyazaki K, Ohta Y, Nagai M, Morimoto N, Kurata T, Takehisa Y, Ikeda Y, Matsuura T, Abe K. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J Neurosci Res 89: 718–728, 2011. doi: 10.1002/jnr.22594. [PubMed] [CrossRef] [Google Scholar]

643. Mohan S, Radha E. Age-related changes in rat muscle collagen. Gerontology 26: 61–67, 1980. doi: 10.1159/000212396. [PubMed] [CrossRef] [Google Scholar]

644. Monemi M, Eriksson PO, Eriksson A, Thornell LE. Adverse changes in fibre type composition of the human masseter versus biceps brachii muscle during aging. J Neurol Sci 154: 35–48, 1998. doi: 10.1016/S0022-510X(97)00208-6. [PubMed] [CrossRef] [Google Scholar]

645. Monti RJ, Roy RR, Edgerton VR. Role of motor unit structure in defining function. Muscle Nerve 24: 848–866, 2001. doi: 10.1002/mus.1083. [PubMed] [CrossRef] [Google Scholar]

646. Mooradian AD, Wong NC. Molecular biology of aging. Part II: A synopsis of current research. J Am Geriatr Soc 39: 717–723, 1991. doi: 10.1111/j.1532-5415.1991.tb03628.x. [PubMed] [CrossRef] [Google Scholar]

647. Moore F, Weekes J, Hardie DG. Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. Eur J Biochem 199: 691–697, 1991. doi: 10.1111/j.1432-1033.1991.tb16172.x. [PubMed] [CrossRef] [Google Scholar]

648. Moscoso LM, Merlie JP, Sanes JR. N-CAM, 43K-rapsyn, and S-laminin mRNAs are concentrated at synaptic sites in muscle fibers. Mol Cell Neurosci 6: 80–89, 1995. doi: 10.1006/mcne.1995.1008. [PubMed] [CrossRef] [Google Scholar]

649. Mosole S, Carraro U, Kern H, Loefler S, Fruhmann H, Vogelauer M, Burggraf S, Mayr W, Krenn M, Paternostro-Sluga T, Hamar D, Cvecka J, Sedliak M, Tirpakova V, Sarabon N, Musarò A, Sandri M, Protasi F, Nori A, Pond A, Zampieri S. Long-term high-level exercise promotes muscle reinnervation with age. J Neuropathol Exp Neurol 73: 284–294, 2014. doi: 10.1097/NEN.0000000000000032. [PubMed] [CrossRef] [Google Scholar]

650. Moss RL, Diffee GM, Greaser ML. Contractile properties of skeletal muscle fibers in relation to myofibrillar protein isoforms. Rev Physiol Biochem Pharmacol 126: 1–63, 1995. doi: 10.1007/BFb0049775. [PubMed] [CrossRef] [Google Scholar]

651. Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Cantó C, Mottis A, Jo YS, Viswanathan M, Schoonjans K, Guarente L, Auwerx J. The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell 154: 430–441, 2013. doi: 10.1016/j.cell.2013.06.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

652. Mukouyama YS, Gerber HP, Ferrara N, Gu C, Anderson DJ. Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development 132: 941–952, 2005. doi: 10.1242/dev.01675. [PubMed] [CrossRef] [Google Scholar]

653. Muller-Delp JM. Heterogeneous ageing of skeletal muscle microvascular function. J Physiol 594: 2285–2295, 2016. doi: 10.1113/JP271005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

654. Münscher C, Rieger T, Müller-Höcker J, Kadenbach B. The point mutation of mitochondrial DNA characteristic for MERRF disease is found also in healthy people of different ages. FEBS Lett 317: 27–30, 1993. doi: 10.1016/0014-5793(93)81484-H. [PubMed] [CrossRef] [Google Scholar]

655. Murdock DG, Christacos NC, Wallace DC. The age-related accumulation of a mitochondrial DNA control region mutation in muscle, but not brain, detected by a sensitive PNA-directed PCR clamping based method. Nucleic Acids Res 28: 4350–4355, 2000. doi: 10.1093/nar/28.21.4350. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

656. Murphy JL, Ratnaike TE, Shang E, Falkous G, Blakely EL, Alston CL, Taivassalo T, Haller RG, Taylor RW, Turnbull DM. Cytochrome c oxidase-intermediate fibres: importance in understanding the pathogenesis and treatment of mitochondrial myopathy. Neuromuscul Disord 22: 690–698, 2012. doi: 10.1016/j.nmd.2012.04.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

657. Musarò A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27: 195–200, 2001. doi: 10.1038/84839. [PubMed] [CrossRef] [Google Scholar]

658. Musch TI, Eklund KE, Hageman KS, Poole DC. Altered regional blood flow responses to submaximal exercise in older rats. J Appl Physiol (1985) 96: 81–88, 2004. doi: 10.1152/japplphysiol.00729.2003. [PubMed] [CrossRef] [Google Scholar]

659. Nakahashi T, Fujimura H, Altar CA, Li J, Kambayashi J, Tandon NN, Sun B. Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett 470: 113–117, 2000. doi: 10.1016/S0014-5793(00)01302-8. [PubMed] [CrossRef] [Google Scholar]

660. Nakai J, Dirksen RT, Nguyen HT, Pessah IN, Beam KG, Allen PD. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380: 72–75, 1996. doi: 10.1038/380072a0. [PubMed] [CrossRef] [Google Scholar]

661. Nederveen JP, Joanisse S, Snijders T, Ivankovic V, Baker SK, Phillips SM, Parise G. Skeletal muscle satellite cells are located at a closer proximity to capillaries in healthy young compared with older men. J Cachexia Sarcopenia Muscle 7: 547–554, 2016. doi: 10.1002/jcsm.12105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

662. Nemeth PM, Pette D, Vrbová G. Comparison of enzyme activities among single muscle fibres within defined motor units. J Physiol 311: 489–495, 1981. doi: 10.1113/jphysiol.1981.sp013600. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

663. Nemeth PM, Solanki L, Gordon DA, Hamm TM, Reinking RM, Stuart DG. Uniformity of metabolic enzymes within individual motor units. J Neurosci 6: 892–898, 1986. doi: 10.1523/JNEUROSCI.06-03-00892.1986. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

663a. Neto WK, Gama EF, Rocha Ramos CC, Taets W, Scapini KB, Ferreira JB, Rodrigues B, Caperuto E. Effects of testosterone on lean mass gain in elderly men: systematic review with meta-analysis of controlled and randomized studies. Age 37: 9742, 2015. [PMC free article] [PubMed] [Google Scholar]

664. Nevitt MC, Cummings SR, Hudes ES. Risk factors for injurious falls: a prospective study. J Gerontol 46: M164–M170, 1991. doi: 10.1093/geronj/46.5.M164. [PubMed] [CrossRef] [Google Scholar]

665. Newlands S, Levitt LK, Robinson CS, Karpf AB, Hodgson VR, Wade RP, Hardeman EC. Transcription occurs in pulses in muscle fibers. Genes Dev 12: 2748–2758, 1998. doi: 10.1101/gad.12.17.2748. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

666. Newton JP, Yemm R, McDonagh MJ. Study of age changes in the motor units of the first dorsal interosseous muscle in man. Gerontology 34: 115–119, 1988. doi: 10.1159/000212939. [PubMed] [CrossRef] [Google Scholar]

667. Nguyen QT, Sanes JR, Lichtman JW. Pre-existing pathways promote precise projection patterns. Nat Neurosci 5: 861–867, 2002. doi: 10.1038/nn905. [PubMed] [CrossRef] [Google Scholar]

668. Nicklas BJ, Brinkley TE. Exercise training as a treatment for chronic inflammation in the elderly. Exerc Sport Sci Rev 37: 165–170, 2009. [PMC free article] [PubMed] [Google Scholar]

669. Nishimune H, Badawi Y, Mori S, Shigemoto K. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice. Sci Rep 6: 27935, 2016. doi: 10.1038/srep27935. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

670. Norman H, Zackrisson H, Hedström Y, Andersson P, Nordquist J, Eriksson LI, Libelius R, Larsson L. Myofibrillar protein and gene expression in acute quadriplegic myopathy. J Neurol Sci 285: 28–38, 2009. doi: 10.1016/j.jns.2009.04.041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

671. Novak LP. Aging, total body potassium, fat-free mass, and cell mass in males and females between ages 18 and 85 years. J Gerontol 27: 438–443, 1972. doi: 10.1093/geronj/27.4.438. [PubMed] [CrossRef] [Google Scholar]

672. O’Donnell KC, Vargas ME, Sagasti A. WldS and PGC-1α regulate mitochondrial transport and oxidation state after axonal injury. J Neurosci 33: 14778–14790, 2013. doi: 10.1523/JNEUROSCI.1331-13.2013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

673. O’Neill BT, Lee KY, Klaus K, Softic S, Krumpoch MT, Fentz J, Stanford KI, Robinson MM, Cai W, Kleinridders A, Pereira RO, Hirshman MF, Abel ED, Accili D, Goodyear LJ, Nair KS, Kahn CR. Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. J Clin Invest 126: 3433–3446, 2016. doi: 10.1172/JCI86522. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

674. O’Sullivan DJ, Swallow M. The fibre size and content of the radial and sural nerves. J Neurol Neurosurg Psychiatry 31: 464–470, 1968. doi: 10.1136/jnnp.31.5.464. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

675. Ochala J, Gustafson AM, Diez ML, Renaud G, Li M, Aare S, Qaisar R, Banduseela VC, Hedström Y, Tang X, Dworkin B, Ford GC, Nair KS, Perera S, Gautel M, Larsson L. Preferential skeletal muscle myosin loss in response to mechanical silencing in a novel rat intensive care unit model: underlying mechanisms. J Physiol 589: 2007–2026, 2011. doi: 10.1113/jphysiol.2010.202044. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

676. Ochala J, Larsson L.. Acquired and hereditary sarcomeric protein diseases. In: Muscle: Fundamental Biology and Mechanisms and Disease. In: Muscle: Fundamental Biology and Mechanisms and Disease, edited by Hill JA, Olson EN. London: Academic, 2012, p. 1023–1030. doi: 10.1016/B978-0-12-381510-1.00074-0. [CrossRef] [Google Scholar]

677. Ochoa J, Mair WG. The normal sural nerve in man. II. Changes in the axons and Schwann cells due to ageing. Acta Neuropathol 13: 217–239, 1969. doi: 10.1007/BF00690643. [PubMed] [CrossRef] [Google Scholar]

678. Oda K. Age changes of motor innervation and acetylcholine receptor distribution on human skeletal muscle fibres. J Neurol Sci 66: 327–338, 1984. doi: 10.1016/0022-510X(84)90021-2. [PubMed] [CrossRef] [Google Scholar]

679. Oertel G. Changes in human skeletal muscles due to ageing. Histological and histochemical observations on autopsy material. Acta Neuropathol 69: 309–313, 1986. doi: 10.1007/BF00688309. [PubMed] [CrossRef] [Google Scholar]

680. Oexle K, Zwirner A, Freudenberg K, Kohlschütter A, Speer A. Examination of telomere lengths in muscle tissue casts doubt on replicative aging as cause of progression in Duchenne muscular dystrophy. Pediatr Res 42: 226–231, 1997. doi: 10.1203/00006450-199708000-00016. [PubMed] [CrossRef] [Google Scholar]

681. Ogilvie H, Cacciani N, Akkad H, Larsson L. Targeting Heat Shock Proteins Mitigates Ventilator Induced Diaphragm Muscle Dysfunction in an Age-Dependent Manner. Front Physiol 7: 417, 2016. doi: 10.3389/fphys.2016.00417. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

682. Oldfors A, Moslemi AR, Jonasson L, Ohlsson M, Kollberg G, Lindberg C. Mitochondrial abnormalities in inclusion-body myositis. Neurology 66, Suppl 1: S49–S55, 2006. doi: 10.1212/01.wnl.0000192127.63013.8d. [PubMed] [CrossRef] [Google Scholar]

683. Olivieri F, Ahtiainen M, Lazzarini R, Pöllänen E, Capri M, Lorenzi M, Fulgenzi G, Albertini MC, Salvioli S, Alen MJ, Kujala UM, Borghetti G, Babini L, Kaprio J, Sipilä S, Franceschi C, Kovanen V, Procopio AD. Hormone replacement therapy enhances IGF-1 signaling in skeletal muscle by diminishing miR-182 and miR-223 expressions: a study on postmenopausal monozygotic twin pairs. Aging Cell 13: 850–861, 2014. doi: 10.1111/acel.12245. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

684. Olsen JM, Sato M, Dallner OS, Sandström AL, Pisani DF, Chambard JC, Amri EZ, Hutchinson DS, Bengtsson T. Glucose uptake in brown fat cells is dependent on mTOR complex 2-promoted GLUT1 translocation. J Cell Biol 207: 365–374, 2014. doi: 10.1083/jcb.201403080. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

685. Omairi S, Matsakas A, Degens H, Kretz O, Hansson KA, Solbrå AV, Bruusgaard JC, Joch B, Sartori R, Giallourou N, Mitchell R, Collins-Hooper H, Foster K, Pasternack A, Ritvos O, Sandri M, Narkar V, Swann JR, Huber TB, Patel K. Enhanced exercise and regenerative capacity in a mouse model that violates size constraints of oxidative muscle fibres. eLife 5: e16940, 2016. doi: 10.7554/eLife.16940. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

686. Onambele GN, Bruce SA, Woledge RC. Oestrogen status in relation to the early training responses in human thumb adductor muscles. Acta Physiol (Oxf) 188: 41–52, 2006. doi: 10.1111/j.1748-1716.2006.01597.x. [PubMed] [CrossRef] [Google Scholar]

687. Onambele NG, Skelton DA, Bruce SA, Woledge RC. Follow-up study of the benefits of hormone replacement therapy on isometric muscle strength of adductor pollicis in postmenopausal women. Clin Sci (Lond) 100: 421–422, 2001. doi: 10.1042/cs1000421. [PubMed] [CrossRef] [Google Scholar]

688. Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, Van Dorpe J, Hellings P, Gorselink M, Heymans S, Theilmeier G, Dewerchin M, Laudenbach V, Vermylen P, Raat H, Acker T, Vleminckx V, Van Den Bosch L, Cashman N, Fujisawa H, Drost MR, Sciot R, Bruyninckx F, Hicklin DJ, Ince C, Gressens P, Lupu F, Plate KH, Robberecht W, Herbert JM, Collen D, Carmeliet P. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28: 131–138, 2001. doi: 10.1038/88842. [PubMed] [CrossRef] [Google Scholar]

689. Orlander J, Kiessling KH, Larsson L, Karlsson J, Aniansson A. Skeletal muscle metabolism and ultrastructure in relation to age in sedentary men. Acta Physiol Scand 104: 249–261, 1978. doi: 10.1111/j.1748-1716.1978.tb06277.x. [PubMed] [CrossRef] [Google Scholar]

690. Pallotti F, Chen X, Bonilla E, Schon EA. Evidence that specific mtDNA point mutations may not accumulate in skeletal muscle during normal human aging. Am J Hum Genet 59: 591–602, 1996. [PMC free article] [PubMed] [Google Scholar]

691. Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL. Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity. Diabetes 64: 2289–2298, 2015. doi: 10.2337/db14-1820. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

692. Papet I, Dardevet D, Sornet C, Béchereau F, Prugnaud J, Pouyet C, Obled C. Acute phase protein levels and thymus, spleen and plasma protein synthesis rates differ in adult and old rats. J Nutr 133: 215–219, 2003. doi: 10.1093/jn/133.1.215. [PubMed] [CrossRef] [Google Scholar]

693. Parízková J, Eiselt E, Sprynarová S, Wachtlová M. Body composition, aerobic capacity, and density of muscle capillaries in young and old men. J Appl Physiol 31: 323–325, 1971. doi: 10.1152/jappl.1971.31.3.323. [PubMed] [CrossRef] [Google Scholar]

694. Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441: 1157–1161, 2006. doi: 10.1038/nature04788. [PubMed] [CrossRef] [Google Scholar]

695. Park SJ, Gavrilova O, Brown AL, Soto JE, Bremner S, Kim J, Xu X, Yang S, Um JH, Koch LG, Britton SL, Lieber RL, Philp A, Baar K, Kohama SG, Abel ED, Kim MK, Chung JH. DNA-PK Promotes the Mitochondrial, Metabolic, and Physical Decline that Occurs During Aging. Cell Metab 25: 1135–1146.e7, 2017. doi: 10.1016/j.cmet.2017.04.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

696. Parkington JD, LeBrasseur NK, Siebert AP, Fielding RA. Contraction-mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle. J Appl Physiol (1985) 97: 243–248, 2004. doi: 10.1152/japplphysiol.01383.2003. [PubMed] [CrossRef] [Google Scholar]

697. Patel SA, Chaudhari A, Gupta R, Velingkaar N, Kondratov RV. Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms. FASEB J 30: 1634–1642, 2016. doi: 10.1096/fj.15-282475. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

698. Paturi S, Gutta AK, Katta A, Kakarla SK, Arvapalli RK, Gadde MK, Nalabotu SK, Rice KM, Wu M, Blough E. Effects of aging and gender on muscle mass and regulation of Akt-mTOR-p70s6k related signaling in the F344BN rat model. Mech Ageing Dev 131: 202–209, 2010. doi: 10.1016/j.mad.2010.01.008. [PubMed] [CrossRef] [Google Scholar]

699. Pavlath GK, Rich K, Webster SG, Blau HM. Localization of muscle gene products in nuclear domains. Nature 337: 570–573, 1989. doi: 10.1038/337570a0. [PubMed] [CrossRef] [Google Scholar]

700. Payne AM, Delbono O. Neurogenesis of excitation-contraction uncoupling in aging skeletal muscle. Exerc Sport Sci Rev 32: 36–40, 2004. doi: 10.1097/00003677-200401000-00008. [PubMed] [CrossRef] [Google Scholar]

701. Payne GW. Effect of inflammation on the aging microcirculation: impact on skeletal muscle blood flow control. Microcirculation 13: 343–352, 2006. doi: 10.1080/10739680600618918. [PubMed] [CrossRef] [Google Scholar]

702. Pedersen BK. Anti-inflammation–just another word for anti-ageing? J Physiol 587: 5515, 2009. doi: 10.1113/jphysiol.2009.183152. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

703. Pelosi M, Alfò M, Martella F, Pappalardo E, Musarò A. Finite mixture clustering of human tissues with different levels of IGF-1 splice variants mRNA transcripts. BMC Bioinformatics 16: 289, 2015. doi: 10.1186/s12859-015-0689-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

704. Perkins DJ, Kniss DA. Tumor necrosis factor-alpha promotes sustained cyclooxygenase-2 expression: attenuation by dexamethasone and NSAIDs. Prostaglandins 54: 727–743, 1997. doi: 10.1016/S0090-6980(97)00144-5. [PubMed] [CrossRef] [Google Scholar]

705. Pestronk A, Drachman DB, Griffin JW. Effects of aging on nerve sprouting and regeneration. Exp Neurol 70: 65–82, 1980. doi: 10.1016/0014-4886(80)90006-0. [PubMed] [CrossRef] [Google Scholar]

706. Petrella JK, Kim JS, Cross JM, Kosek DJ, Bamman MM. Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. Am J Physiol Endocrinol Metab 291: E937–E946, 2006. doi: 10.1152/ajpendo.00190.2006. [PubMed] [CrossRef] [Google Scholar]

707. Petrella JK, Kim JS, Cross JM, Kosek DJ, Bamman MM. Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. Am J Physiol Endocrinol Metab 291: E937–E946, 2006. doi: 10.1152/ajpendo.00190.2006. [PubMed] [CrossRef] [Google Scholar]

708. Pette D, Staron RS. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 116: 1–76, 1990. [PubMed] [Google Scholar]

709. Pettigrew FP, Gardiner PF. Changes in rat plantaris motor unit profiles with advanced age. Mech Ageing Dev 40: 243–259, 1987. doi: 10.1016/0047-6374(87)90022-4. [PubMed] [CrossRef] [Google Scholar]

709a. Phoenix C, de Grey AD. A model of aging as accumulated damage matches observed mortality patterns and predicts the life-extending effects of prospective interventions. Age (Dordr) 29: 133–189, 2007. [PMC free article] [PubMed] [Google Scholar]

710. Phillips BE, Williams JP, Greenhaff PL, Smith K, Atherton PJ. Physiological adaptations to resistance exercise as a function of age. JCI Insight 2: 95581, 2017. doi: 10.1172/jci.insight.95581. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

711. Phillips SK, Rook KM, Siddle NC, Bruce SA, Woledge RC. Muscle weakness in women occurs at an earlier age than in men, but strength is preserved by hormone replacement therapy. Clin Sci (Lond) 84: 95–98, 1993. doi: 10.1042/cs0840095. [PubMed] [CrossRef] [Google Scholar]

712. Phillips T, Leeuwenburgh C. Muscle fiber specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction. FASEB J 19: 668–670, 2005. doi: 10.1096/fj.04-2870fje. [PubMed] [CrossRef] [Google Scholar]

713. Piasecki M, Ireland A, Coulson J, Stashuk DW, Hamilton-Wright A, Swiecicka A, Rutter MK, McPhee JS, Jones DA. Motor unit number estimates and neuromuscular transmission in the tibialis anterior of master athletes: evidence that athletic older people are not spared from age-related motor unit remodeling. Physiol Rep 4: e12987, 2016. doi: 10.14814/phy2.12987. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

714. Picard M, Ritchie D, Wright KJ, Romestaing C, Thomas MM, Rowan SL, Taivassalo T, Hepple RT. Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 9: 1032–1046, 2010. doi: 10.1111/j.1474-9726.2010.00628.x. [PubMed] [CrossRef] [Google Scholar]

715. Picard M, Taivassalo T, Gouspillou G, Hepple RT. Mitochondria: isolation, structure and function. J Physiol 589: 4413–4421, 2011. doi: 10.1113/jphysiol.2011.212712. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

716. Piiper J, Scheid P. Diffusion limitation of O2 supply to tissue in homogeneous and heterogeneous models. Respir Physiol 85: 127–136, 1991. doi: 10.1016/0034-5687(91)90011-7. [PubMed] [CrossRef] [Google Scholar]

717. Pipalia TG, Koth J, Roy SD, Hammond CL, Kawakami K, Hughes SM. Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair. Dis Model Mech 9: 671–684, 2016. doi: 10.1242/dmm.022251. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

718. Piraino S, Boero F, Aeschbach B, Schmid V. Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). Biol Bull 190: 302–312, 1996. doi: 10.2307/1543022. [PubMed] [CrossRef] [Google Scholar]

719. Plyley MJ, Olmstead BJ, Noble EG. Time course of changes in capillarization in hypertrophied rat plantaris muscle. J Appl Physiol (1985) 84: 902–907, 1998. doi: 10.1152/jappl.1998.84.3.902. [PubMed] [CrossRef] [Google Scholar]

720. Poggioli T, Vujic A, Yang P, Macias-Trevino C, Uygur A, Loffredo FS, Pancoast JR, Cho M, Goldstein J, Tandias RM, Gonzalez E, Walker RG, Thompson TB, Wagers AJ, Fong YW, Lee RT. Circulating Growth Differentiation Factor 11/8 Levels Decline With Age. Circ Res 118: 29–37, 2016. doi: 10.1161/CIRCRESAHA.115.307521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

721. Pöllänen E, Sipilä S, Alen M, Ronkainen PH, Ankarberg-Lindgren C, Puolakka J, Suominen H, Hämäläinen E, Turpeinen U, Konttinen YT, Kovanen V. Differential influence of peripheral and systemic sex steroids on skeletal muscle quality in pre- and postmenopausal women. Aging Cell 10: 650–660, 2011. doi: 10.1111/j.1474-9726.2011.00701.x. [PubMed] [CrossRef] [Google Scholar]

722. Poole JG, Lawrenson L, Kim J, Brown C, Richardson RS. Vascular and metabolic response to cycle exercise in sedentary humans: effect of age. Am J Physiol Heart Circ Physiol 284: H1251–H1259, 2003. doi: 10.1152/ajpheart.00790.2002. [PubMed] [CrossRef] [Google Scholar]

723. Power GA, Dalton BH, Behm DG, Vandervoort AA, Doherty TJ, Rice CL. Motor unit number estimates in masters runners: use it or lose it? Med Sci Sports Exerc 42: 1644–1650, 2010. doi: 10.1249/MSS.0b013e3181d6f9e9. [PubMed] [CrossRef] [Google Scholar]

724. Pratt SJP, Shah SB, Ward CW, Inacio MP, Stains JP, Lovering RM. Effects of in vivo injury on the neuromuscular junction in healthy and dystrophic muscles. J Physiol 591: 559–570, 2013. doi: 10.1113/jphysiol.2012.241679. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

725. Price FD, von Maltzahn J, Bentzinger CF, Dumont NA, Yin H, Chang NC, Wilson DH, Frenette J, Rudnicki MA. Inhibition of JAK-STAT signaling stimulates adult satellite cell function. [Corrigendum in Nat Med 21: 414, 2015.] Nat Med 20: 1174–1181, 2014. doi: 10.1038/nm.3655. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

726. Proctor DN, Shen PH, Dietz NM, Eickhoff TJ, Lawler LA, Ebersold EJ, Loeffler DL, Joyner MJ. Reduced leg blood flow during dynamic exercise in older endurance-trained men. J Appl Physiol (1985) 85: 68–75, 1998. doi: 10.1152/jappl.1998.85.1.68. [PubMed] [CrossRef] [Google Scholar]

727. Proctor DN, Sinning WE, Walro JM, Sieck GC, Lemon PW. Oxidative capacity of human muscle fiber types: effects of age and training status. J Appl Physiol (1985) 78: 2033–2038, 1995. doi: 10.1152/jappl.1995.78.6.2033. [PubMed] [CrossRef] [Google Scholar]

728. Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268: L699–L722, 1995. [PubMed] [Google Scholar]

729. Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O’Malley B, Spiegelman BM. Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286: 1368–1371, 1999. doi: 10.1126/science.286.5443.1368. [PubMed] [CrossRef] [Google Scholar]

730. Putman CT, Sultan KR, Wassmer T, Bamford JA, Skorjanc D, Pette D. Fiber-type transitions and satellite cell activation in low-frequency-stimulated muscles of young and aging rats. J Gerontol A Biol Sci Med Sci 56: B510–B519, 2001. doi: 10.1093/gerona/56.12.B510. [PubMed] [CrossRef] [Google Scholar]

731. Qaisar R, Renaud G, Hedstrom Y, Pöllänen E, Ronkainen P, Kaprio J, Alen M, Sipilä S, Artemenko K, Bergquist J, Kovanen V, Larsson L. Hormone replacement therapy improves contractile function and myonuclear organization of single muscle fibres from postmenopausal monozygotic female twin pairs. J Physiol 591: 2333–2344, 2013. doi: 10.1113/jphysiol.2012.250092. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

732. Qaisar R, Renaud G, Morine K, Barton ER, Sweeney HL, Larsson L. Is functional hypertrophy and specific force coupled with the addition of myonuclei at the single muscle fiber level? FASEB J 26: 1077–1085, 2012. doi: 10.1096/fj.11-192195. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

733. Qiu MG, Zhu XH. Aging changes of the angioarchitecture and arterial morphology of the spinal cord in rats. Gerontology 50: 360–365, 2004. doi: 10.1159/000080173. [PubMed] [CrossRef] [Google Scholar]

734. Quetelet A. Sur lHomme et le Dévelopment de ses Facultés. Brussels: Haumann, 1836. [Google Scholar]

735. Quinlan JG, Iaizzo PA, Lambert EH, Gronert GA. Ankle dorsiflexor twitch properties in malignant hyperthermia. Muscle Nerve 12: 119–125, 1989. doi: 10.1002/mus.880120206. [PubMed] [CrossRef] [Google Scholar]

736. Quinzii CM, López LC, Gilkerson RW, Dorado B, Coku J, Naini AB, Lagier-Tourenne C, Schuelke M, Salviati L, Carrozzo R, Santorelli F, Rahman S, Tazir M, Koenig M, DiMauro S, Hirano M. Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J 24: 3733–3743, 2010. doi: 10.1096/fj.09-152728. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

737. Radák Z, Takahashi R, Kumiyama A, Nakamoto H, Ohno H, Ookawara T, Goto S. Effect of aging and late onset dietary restriction on antioxidant enzymes and proteasome activities, and protein carbonylation of rat skeletal muscle and tendon. Exp Gerontol 37: 1423–1430, 2002. doi: 10.1016/S0531-5565(02)00116-X. [PubMed] [CrossRef] [Google Scholar]

738. Rainsford KD. Discovery, mechanisms of action and safety of ibuprofen. Int J Clin Pract Suppl 135: 3–8, 2003. [PubMed] [Google Scholar]

739. Ralston E, Lu Z, Biscocho N, Soumaka E, Mavroidis M, Prats C, Lømo T, Capetanaki Y, Ploug T. Blood vessels and desmin control the positioning of nuclei in skeletal muscle fibers. J Cell Physiol 209: 874–882, 2006. doi: 10.1002/jcp.20780. [PubMed] [CrossRef] [Google Scholar]

740. Ramamurthy B, Höök P, Jones AD, Larsson L. Changes in myosin structure and function in response to glycation. FASEB J 15: 2415–2422, 2001. doi: 10.1096/fj.01-0183com. [PubMed] [CrossRef] [Google Scholar]

741. Ramamurthy B, Jones AD, Larsson L. Glutathione reverses early effects of glycation on myosin function. Am J Physiol Cell Physiol 285: C419–C424, 2003. doi: 10.1152/ajpcell.00502.2002. [PubMed] [CrossRef] [Google Scholar]

742. Ramamurthy B, Jones AD, Larsson L. Glutathione reverses early effects of glycation on myosin function. Am J Physiol Cell Physiol 285: C419–C424, 2003. doi: 10.1152/ajpcell.00502.2002. [PubMed] [CrossRef] [Google Scholar]

743. Ramamurthy B, Larsson L. Detection of an aging-related increase in advanced glycation end products in fast- and slow-twitch skeletal muscles in the rat. Biogerontology 14: 293–301, 2013. doi: 10.1007/s10522-013-9430-y. [PubMed] [CrossRef] [Google Scholar]

744. Ramaswamy KS, Palmer ML, van der Meulen JH, Renoux A, Kostrominova TY, Michele DE, Faulkner JA. Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J Physiol 589: 1195–1208, 2011. doi: 10.1113/jphysiol.2010.201921. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

744a. Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148: 46–57, 2012. [PMC free article] [PubMed] [Google Scholar]

745. Ratkevicius A, Joyson A, Selmer I, Dhanani T, Grierson C, Tommasi AM, DeVries A, Rauchhaus P, Crowther D, Alesci S, Yaworsky P, Gilbert F, Redpath TW, Brady J, Fearon KC, Reid DM, Greig CA, Wackerhage H. Serum concentrations of myostatin and myostatin-interacting proteins do not differ between young and sarcopenic elderly men. J Gerontol A Biol Sci Med Sci 66: 620–626, 2011. doi: 10.1093/gerona/glr025. [PubMed] [CrossRef] [Google Scholar]

746. Rattan SI. Synthesis, modifications, and turnover of proteins during aging. Exp Gerontol 31: 33–47, 1996. doi: 10.1016/0531-5565(95)02022-5. [PubMed] [CrossRef] [Google Scholar]

747. Raymond M. Paralysie essentielle de l’enfance: Atrophie musculaire consécutive. Gaz Med Paris 4: 225–226, 1875. [Google Scholar]

748. Rebbeck RT, Karunasekara Y, Board PG, Beard NA, Casarotto MG, Dulhunty AF. Skeletal muscle excitation-contraction coupling: who are the dancing partners? Int J Biochem Cell Biol 48: 28–38, 2014. doi: 10.1016/j.biocel.2013.12.001. [PubMed] [CrossRef] [Google Scholar]

749. Reid B, Martinov VN, Njå A, Lømo T, Bewick GS. Activity-dependent plasticity of transmitter release from nerve terminals in rat fast and slow muscles. J Neurosci 23: 9340–9348, 2003. doi: 10.1523/JNEUROSCI.23-28-09340.2003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

750. Reid MB, Khawli FA, Moody MR. Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscle. J Appl Physiol (1985) 75: 1081–1087, 1993. doi: 10.1152/jappl.1993.75.3.1081. [PubMed] [CrossRef] [Google Scholar]

751. Reiser PJ, Kasper CE, Moss RL. Myosin subunits and contractile properties of single fibers from hypokinetic rat muscles. J Appl Physiol (1985) 63: 2293–2300, 1987. doi: 10.1152/jappl.1987.63.6.2293. [PubMed] [CrossRef] [Google Scholar]

752. Renganathan M, Messi ML, Delbono O. Dihydropyridine receptor-ryanodine receptor uncoupling in aged skeletal muscle. J Membr Biol 157: 247–253, 1997. doi: 10.1007/s002329900233. [PubMed] [CrossRef] [Google Scholar]

753. Rexed B. Contribution to the knowledge of the postnatal development of the peripheral nervous system in man. Acta Psychiatr Neurol Scand 33 Suppl: 121–193, 1944. [Google Scholar]

754. Rich M, Lichtman JW. Motor nerve terminal loss from degenerating muscle fibers. Neuron 3: 677–688, 1989. doi: 10.1016/0896-6273(89)90236-5. [PubMed] [CrossRef] [Google Scholar]

755. Rich MM, Lichtman JW. In vivo visualization of pre- and postsynaptic changes during synapse elimination in reinnervated mouse muscle. J Neurosci 9: 1781–1805, 1989. doi: 10.1523/JNEUROSCI.09-05-01781.1989. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

756. Rieu I, Magne H, Savary-Auzeloux I, Averous J, Bos C, Peyron MA, Combaret L, Dardevet D. Reduction of low grade inflammation restores blunting of postprandial muscle anabolism and limits sarcopenia in old rats. J Physiol 587: 5483–5492, 2009. doi: 10.1113/jphysiol.2009.178319. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

757. Ripoll E, Sillau AH, Banchero N. Changes in the capillarity of skeletal muscle in the growing rat. Pflugers Arch 380: 153–158, 1979. doi: 10.1007/BF00582151. [PubMed] [CrossRef] [Google Scholar]

758. Rivard A, Berthou-Soulie L, Principe N, Kearney M, Curry C, Branellec D, Semenza GL, Isner JM. Age-dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity. J Biol Chem 275: 29643–29647, 2000. doi: 10.1074/jbc.M001029200. [PubMed] [CrossRef] [Google Scholar]

759. Rivard A, Fabre JE, Silver M, Chen D, Murohara T, Kearney M, Magner M, Asahara T, Isner JM. Age-dependent impairment of angiogenesis. Circulation 99: 111–120, 1999. doi: 10.1161/01.CIR.99.1.111. [PubMed] [CrossRef] [Google Scholar]

760. Rivas DA, McDonald DJ, Rice NP, Haran PH, Dolnikowski GG, Fielding RA. Diminished anabolic signaling response to insulin induced by intramuscular lipid accumulation is associated with inflammation in aging but not obesity. Am J Physiol Regul Integr Comp Physiol 310: R561–R569, 2016. doi: 10.1152/ajpregu.00198.2015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

761. Robbins AS, Rubenstein LZ, Josephson KR, Schulman BL, Osterweil D, Fine G. Predictors of falls among elderly people. Results of two population-based studies. Arch Intern Med 149: 1628–1633, 1989. doi: 10.1001/archinte.1989.00390070138022. [PubMed] [CrossRef] [Google Scholar]

762. Robbins J, Horan T, Gulick J, Kropp K. The chicken myosin heavy chain family. J Biol Chem 261: 6606–6612, 1986. [PubMed] [Google Scholar]

763. Robbins N, Fahim MA. Progression of age changes in mature mouse motor nerve terminals and its relation to locomotor activity. J Neurocytol 14: 1019–1036, 1985. doi: 10.1007/BF01224810. [PubMed] [CrossRef] [Google Scholar]

764. Robinson MM, Dasari S, Konopka AR, Johnson ML, Manjunatha S, Esponda RR, Carter RE, Lanza IR, Nair KS. Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans. Cell Metab 25: 581–592, 2017. doi: 10.1016/j.cmet.2017.02.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

765. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434: 113–118, 2005. doi: 10.1038/nature03354. [PubMed] [CrossRef] [Google Scholar]

766. Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del Piccolo P, Foretz M, Scorrano L, Rudolf R, Sandri M. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29: 1774–1785, 2010. doi: 10.1038/emboj.2010.60. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

767. Romanello V, Sandri M. Mitochondrial Quality Control and Muscle Mass Maintenance. Front Physiol 6: 422, 2016. doi: 10.3389/fphys.2015.00422. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

768. Rome LC, Sosnicki AA, Goble DO. Maximum velocity of shortening of three fibre types from horse soleus muscle: implications for scaling with body size. J Physiol 431: 173–185, 1990. doi: 10.1113/jphysiol.1990.sp018325. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

769. Roos CM, Zhang B, Palmer AK, Ogrodnik MB, Pirtskhalava T, Thalji NM, Hagler M, Jurk D, Smith LA, Casaclang-Verzosa G, Zhu Y, Schafer MJ, Tchkonia T, Kirkland JL, Miller JD. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15: 973–977, 2016. doi: 10.1111/acel.12458. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

770. Rosenberg IH. Summary comments. Am J Clin Nutr 50, Suppl: 1231S–1233S, 1989. doi: 10.1093/ajcn/50.5.1231. [CrossRef] [Google Scholar]

771. Rosenheimer JL. Ultraterminal sprouting in innervated and partially denervated adult and aged rat muscle. Neuroscience 38: 763–770, 1990. doi: 10.1016/0306-4522(90)90069-G. [PubMed] [CrossRef] [Google Scholar]

772. Rosenheimer JL, Smith DO. Differential changes in the end-plate architecture of functionally diverse muscles during aging. J Neurophysiol 53: 1567–1581, 1985. doi: 10.1152/jn.1985.53.6.1567. [PubMed] [CrossRef] [Google Scholar]

773. Rossiter HB, Howlett RA, Holcombe HH, Entin PL, Wagner HE, Wagner PD. Age is no barrier to muscle structural, biochemical and angiogenic adaptations to training up to 24 months in female rats. J Physiol 565: 993–1005, 2005. doi: 10.1113/jphysiol.2004.080663. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

774. Roth SM, Metter EJ, Ling S, Ferrucci L. Inflammatory factors in age-related muscle wasting. Curr Opin Rheumatol 18: 625–630, 2006. doi: 10.1097/01.bor.0000245722.10136.6d. [PubMed] [CrossRef] [Google Scholar]

775. Rowan SL, Purves-Smith FM, Solbak NM, Hepple RT. Accumulation of severely atrophic myofibers marks the acceleration of sarcopenia in slow and fast twitch muscles. Exp Gerontol 46: 660–669, 2011. [PubMed] [Google Scholar]

776. Rowan SL, Rygiel K, Purves-Smith FM, Solbak NM, Turnbull DM, Hepple RT. Denervation causes fiber atrophy and myosin heavy chain co-expression in senescent skeletal muscle. PLoS One 7: e29082, 2012. doi: 10.1371/journal.pone.0029082. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

777. Rowe GC, El-Khoury R, Patten IS, Rustin P, Arany Z. PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle. PLoS One 7: e41817, 2012. doi: 10.1371/journal.pone.0041817. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

778. Roy RR, Monke SR, Allen DL, Edgerton VR. Modulation of myonuclear number in functionally overloaded and exercised rat plantaris fibers. J Appl Physiol (1985) 87: 634–642, 1999. doi: 10.1152/jappl.1999.87.2.634. [PubMed] [CrossRef] [Google Scholar]

778a. Rucker K, de Sá L, Arbex A. Growth hormone replacement therapy in patients without adult growth hormone deficiency: What answers do we have so far. Health 9: 799–810, 2017. [Google Scholar]

779. Rudman D. Growth hormone, body composition, and aging. J Am Geriatr Soc 33: 800–807, 1985. doi: 10.1111/j.1532-5415.1985.tb04195.x. [PubMed] [CrossRef] [Google Scholar]

780. Rudman D, Chawla RK, Kutner MH. Heterogeneity of growth hormone in the nocturnal serum of children. Pediatr Res 19: 981–985, 1985. doi: 10.1203/00006450-198510000-00002. [PubMed] [CrossRef] [Google Scholar]

781. Rudman D, Feller AG, Cohn L, Shetty KR, Rudman IW, Draper MW. Effects of human growth hormone on body composition in elderly men. Horm Res 36, Suppl 1: 73–81, 1991. doi: 10.1159/000182193. [PubMed] [CrossRef] [Google Scholar]

782. Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha PY, Goldberg AF, Schlenker RA, Cohn L, Rudman IW, Mattson DE. Effects of human growth hormone in men over 60 years old. N Engl J Med 323: 1–6, 1990. doi: 10.1056/NEJM199007053230101. [PubMed] [CrossRef] [Google Scholar]

783. Russ DW, Boyd IM, McCoy KM, McCorkle KW. Muscle-specificity of age-related changes in markers of autophagy and sphingolipid metabolism. Biogerontology 16: 747–759, 2015. doi: 10.1007/s10522-015-9598-4. [PubMed] [CrossRef] [Google Scholar]

784. Ryan NA, Zwetsloot KA, Westerkamp LM, Hickner RC, Pofahl WE, Gavin TP. Lower skeletal muscle capillarization and VEGF expression in aged vs. young men. J Appl Physiol (1985) 100: 178–185, 2006. doi: 10.1152/japplphysiol.00827.2005. [PubMed] [CrossRef] [Google Scholar]

785. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. J Physiol 594: 4499–4512, 2016. doi: 10.1113/JP271212. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

785a. Saad F, Röhrig G, von Haehling S, Traish A. Testosterone Deficiency and Testosterone Treatment in Older Men. Gerontology 63: 144–156, 2017. [PubMed] [Google Scholar]

786. Sacconi S, Salviati L, Nishigaki Y, Walker WF, Hernandez-Rosa E, Trevisson E, Delplace S, Desnuelle C, Shanske S, Hirano M, Schon EA, Bonilla E, De Vivo DC, DiMauro S, Davidson MM. A functionally dominant mitochondrial DNA mutation. Hum Mol Genet 17: 1814–1820, 2008. doi: 10.1093/hmg/ddn073. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

787. Safdar A, Little JP, Stokl AJ, Hettinga BP, Akhtar M, Tarnopolsky MA. Exercise increases mitochondrial PGC-1alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem 286: 10605–10617, 2011. doi: 10.1074/jbc.M110.211466. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Retracted

788. Sakita M, Murakami S, Fujino H. Age-related morphological regression of myelinated fibers and capillary architecture of distal peripheral nerves in rats. BMC Neurosci 17: 39, 2016. doi: 10.1186/s12868-016-0277-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

789. Sakuma K, Kinoshita M, Ito Y, Aizawa M, Aoi W, Yamaguchi A. p62/SQSTM1 but not LC3 is accumulated in sarcopenic muscle of mice. J Cachexia Sarcopenia Muscle 7: 204–212, 2016. doi: 10.1002/jcsm.12045. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

790. Salmons S, Henriksson J. The adaptive response of skeletal muscle to increased use. Muscle Nerve 4: 94–105, 1981. doi: 10.1002/mus.880040204. [PubMed] [CrossRef] [Google Scholar]

791. Salviati G, Betto R, Danieli Betto D, Zeviani M. Myofibrillar-protein isoforms and sarcoplasmic-reticulum Ca2+-transport activity of single human muscle fibres. Biochem J 224: 215–225, 1984. doi: 10.1042/bj2240215. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

792. Samorajski T. Age differences in the morphology of posterior tibial nerves of mice. J Comp Neurol 157: 439–451, 1974. doi: 10.1002/cne.901570406. [PubMed] [CrossRef] [Google Scholar]

793. Samuel MA, Valdez G, Tapia JC, Lichtman JW, Sanes JR. Agrin and synaptic laminin are required to maintain adult neuromuscular junctions. PLoS One 7: e46663, 2012. doi: 10.1371/journal.pone.0046663. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

794. Sander HW, Golden M, Danon MJ. Quadriplegic areflexic ICU illness: selective thick filament loss and normal nerve histology. Muscle Nerve 26: 499–505, 2002. doi: 10.1002/mus.10233. [PubMed] [CrossRef] [Google Scholar]

795. Sandri M, Barberi L, Bijlsma AY, Blaauw B, Dyar KA, Milan G, Mammucari C, Meskers CG, Pallafacchina G, Paoli A, Pion D, Roceri M, Romanello V, Serrano AL, Toniolo L, Larsson L, Maier AB, Muñoz-Cánoves P, Musarò A, Pende M, Reggiani C, Rizzuto R, Schiaffino S. Signalling pathways regulating muscle mass in ageing skeletal muscle: the role of the IGF1-Akt-mTOR-FoxO pathway. Biogerontology 14: 303–323, 2013. doi: 10.1007/s10522-013-9432-9. [PubMed] [CrossRef] [Google Scholar]

796. Sanes JR, Johnson YR, Kotzbauer PT, Mudd J, Hanley T, Martinou JC, Merlie JP. Selective expression of an acetylcholine receptor-lacZ transgene in synaptic nuclei of adult muscle fibers. Development 113: 1181–1191, 1991. [PubMed] [Google Scholar]

797. Sanes JR, Marshall LM, McMahan UJ. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol 78: 176–198, 1978. doi: 10.1083/jcb.78.1.176. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

798. Sartori R, Gregorevic P, Sandri M. TGFβ and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol Metab 25: 464–471, 2014. doi: 10.1016/j.tem.2014.06.002. [PubMed] [CrossRef] [Google Scholar]

799. Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, Sandri M. Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 296: C1248–C1257, 2009. doi: 10.1152/ajpcell.00104.2009. [PubMed] [CrossRef] [Google Scholar]

800. Sartori R, Schirwis E, Blaauw B, Bortolanza S, Zhao J, Enzo E, Stantzou A, Mouisel E, Toniolo L, Ferry A, Stricker S, Goldberg AL, Dupont S, Piccolo S, Amthor H, Sandri M. BMP signaling controls muscle mass. Nat Genet 45: 1309–1318, 2013. doi: 10.1038/ng.2772. [PubMed] [CrossRef] [Google Scholar]

801. Scelsi R, Marchetti C, Poggi P. Histochemical and ultrastructural aspects of m. vastus lateralis in sedentary old people (age 65–89 years). Acta Neuropathol 51: 99–105, 1980. doi: 10.1007/BF00690450. [PubMed] [CrossRef] [Google Scholar]

802. Schaap LA, Pluijm SM, Deeg DJ, Visser M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med 119: 526.e9–526.e17, 2006. doi: 10.1016/j.amjmed.2005.10.049. [PubMed] [CrossRef] [Google Scholar]

803. Schaefer AM, Sanes JR, Lichtman JW. A compensatory subpopulation of motor neurons in a mouse model of amyotrophic lateral sclerosis. J Comp Neurol 490: 209–219, 2005. doi: 10.1002/cne.20620. [PubMed] [CrossRef] [Google Scholar]

804. Schafer MJ, Atkinson EJ, Vanderboom PM, Kotajarvi B, White TA, Moore MM, Bruce CJ, Greason KL, Suri RM, Khosla S, Miller JD, Bergen HR III, LeBrasseur NK. Quantification of GDF11 and Myostatin in Human Aging and Cardiovascular Disease. Cell Metab 23: 1207–1215, 2016. doi: 10.1016/j.cmet.2016.05.023. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

805. Schaie WK. Quasi-experimental research designs in the psychology of aging. In: Handbook of Psychology of Aging , edited by Birren JE, Schaie KW. New York: Van Nostrand Reinhold, 1977, p. 39–58. [Google Scholar]

806. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280: 4294–4314, 2013. doi: 10.1111/febs.12253. [PubMed] [CrossRef] [Google Scholar]

807. Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76: 371–423, 1996. doi: 10.1152/physrev.1996.76.2.371. [PubMed] [CrossRef] [Google Scholar]

808. Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, DiMauro S. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 244: 346–349, 1989. doi: 10.1126/science.2711184. [PubMed] [CrossRef] [Google Scholar]

809. Schultz AB, Ashton-Miller JA, Alexander NB. What leads to age and gender differences in balance maintenance and recovery? Muscle Nerve Suppl 20, Suppl 5: S60–S64, 1997. doi: 10.1002/(SICI)1097-4598(1997)5+<60::AID-MUS15>3.0.CO;2-2. [PubMed] [CrossRef] [Google Scholar]

810. Schultz E, Lipton BH. Skeletal muscle satellite cells: changes in proliferation potential as a function of age. Mech Ageing Dev 20: 377–383, 1982. doi: 10.1016/0047-6374(82)90105-1. [PubMed] [CrossRef] [Google Scholar]

811. Sciacco M, Bonilla E, Schon EA, DiMauro S, Moraes CT. Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet 3: 13–19, 1994. doi: 10.1093/hmg/3.1.13. [PubMed] [CrossRef] [Google Scholar]

812. Scioli MG, Bielli A, Arcuri G, Ferlosio A, Orlandi A. Ageing and microvasculature. Vasc Cell 6: 19, 2014. doi: 10.1186/2045-824X-6-19. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

813. Scorrano L. Multiple functions of mitochondria-shaping proteins. Novartis Found Symp 287: 47–55, 2007. [PubMed] [Google Scholar]

814. Seaberg B, Henslee G, Wang S, Paez-Colasante X, Landreth GE, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol 35: 1238–1253, 2015. doi: 10.1128/MCB.01071-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

815. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA. Pax7 is required for the specification of myogenic satellite cells. Cell 102: 777–786, 2000. doi: 10.1016/S0092-8674(00)00066-0. [PubMed] [CrossRef] [Google Scholar]

816. Sebastián D, Sorianello E, Segalés J, Irazoki A, Ruiz-Bonilla V, Sala D, Planet E, Berenguer-Llergo A, Muñoz JP, Sánchez-Feutrie M, Plana N, Hernández-Álvarez MI, Serrano AL, Palacín M, Zorzano A. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO J 35: 1677–1693, 2016. doi: 10.15252/embj.201593084. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

817. Shankaran M, Shearer TW, Stimpson SA, Turner SM, King C, Wong PY, Shen Y, Turnbull PS, Kramer F, Clifton L, Russell A, Hellerstein MK, Evans WJ. Proteome-wide muscle protein fractional synthesis rates predict muscle mass gain in response to a selective androgen receptor modulator in rats. Am J Physiol Endocrinol Metab 310: E405–E417, 2016. doi: 10.1152/ajpendo.00257.2015. [PubMed] [CrossRef] [Google Scholar]

818. Sheetz MP, Spudich JA. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303: 31–35, 1983. doi: 10.1038/303031a0. [PubMed] [CrossRef] [Google Scholar]

819. Sheetz MP, Spudich JA. Movement of myosin-coated structures on actin cables. Cell Motil 3: 485–489, 1983. doi: 10.1002/cm.970030515. [PubMed] [CrossRef] [Google Scholar]

820. Shephard RJ. Physical Activity and Aging. London: Croom Helm, 1978, p. 24–39. [Google Scholar]

821. Shimpo M, Ikeda U, Maeda Y, Takahashi M, Miyashita H, Mizukami H, Urabe M, Kume A, Takizawa T, Shibuya M, Ozawa K, Shimada K. AAV-mediated VEGF gene transfer into skeletal muscle stimulates angiogenesis and improves blood flow in a rat hindlimb ischemia model. Cardiovasc Res 53: 993–1001, 2002. doi: 10.1016/S0008-6363(01)00546-6. [PubMed] [CrossRef] [Google Scholar]

822. Shinpo K, Kikuchi S, Sasaki H, Ogata A, Moriwaka F, Tashiro K. Selective vulnerability of spinal motor neurons to reactive dicarbonyl compounds, intermediate products of glycation, in vitro: implication of inefficient glutathione system in spinal motor neurons. Brain Res 861: 151–159, 2000. doi: 10.1016/S0006-8993(00)02047-3. [PubMed] [CrossRef] [Google Scholar]

823. Shoffner JM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci USA 86: 7952–7956, 1989. doi: 10.1073/pnas.86.20.7952. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

824. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 102: 5618–5623, 2005. doi: 10.1073/pnas.0501559102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

825. Short KR, Vittone JL, Bigelow ML, Proctor DN, Coenen-Schimke JM, Rys P, Nair KS. Changes in myosin heavy chain mRNA and protein expression in human skeletal muscle with age and endurance exercise training. J Appl Physiol (1985) 99: 95–102, 2005. doi: 10.1152/japplphysiol.00129.2005. [PubMed] [CrossRef] [Google Scholar]

826. Shrager JB, Desjardins PR, Burkman JM, Konig SK, Stewart SK, Su L, Shah MC, Bricklin E, Tewari M, Hoffman R, Rickels MR, Jullian EH, Rubinstein NA, Stedman HH. Human skeletal myosin heavy chain genes are tightly linked in the order embryonic-IIa-IId/x-ILb-perinatal-extraocular [In Process Citation]. J Muscle Res Cell Motil 21: 345–355, 2000. doi: 10.1023/A:1005635030494. [PubMed] [CrossRef] [Google Scholar]

827. Sidenius P, Jakobsen J. Axonal transport in early experimental diabetes. Brain Res 173: 315–330, 1979. doi: 10.1016/0006-8993(79)90631-0. [PubMed] [CrossRef] [Google Scholar]

828. Simon AM, Hoppe P, Burden SJ. Spatial restriction of AChR gene expression to subsynaptic nuclei. Development 114: 545–553, 1992. [PubMed] [Google Scholar]

829. Sindler AL, Reyes R, Chen B, Ghosh P, Gurovich AN, Kang LS, Cardounel AJ, Delp MD, Muller-Delp JM. Age and exercise training alter signaling through reactive oxygen species in the endothelium of skeletal muscle arterioles. J Appl Physiol (1985) 114: 681–693, 2013. doi: 10.1152/japplphysiol.00341.2012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

830. Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res Rev 10: 319–329, 2011. doi: 10.1016/j.arr.2010.11.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

831. Sipilä S, Narici M, Kjaer M, Pöllänen E, Atkinson RA, Hansen M, Kovanen V. Sex hormones and skeletal muscle weakness. Biogerontology 14: 231–245, 2013. doi: 10.1007/s10522-013-9425-8. [PubMed] [CrossRef] [Google Scholar]

832. Siu PM, Pistilli EE, Butler DC, Alway SE. Aging influences cellular and molecular responses of apoptosis to skeletal muscle unloading. Am J Physiol Cell Physiol 288: C338–C349, 2005. doi: 10.1152/ajpcell.00239.2004. [PubMed] [CrossRef] [Google Scholar]

833. Smerdu V, Karsch-Mizrachi I, Campione M, Leinwand L, Schiaffino S. Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Physiol 267: C1723–C1728, 1994. doi: 10.1152/ajpcell.1994.267.6.C1723. [PubMed] [CrossRef] [Google Scholar]

834. Smith CB, Goochee C, Rapoport SI, Sokoloff L. Effects of ageing on local rates of cerebral glucose utilization in the rat. Brain 103: 351–365, 1980. doi: 10.1093/brain/103.2.351. [PubMed] [CrossRef] [Google Scholar]

835. Snijders T, Nederveen JP, Joanisse S, Leenders M, Verdijk LB, van Loon LJ, Parise G. Muscle fibre capillarization is a critical factor in muscle fibre hypertrophy during resistance exercise training in older men. J Cachexia Sarcopenia Muscle 8: 267–276, 2017. doi: 10.1002/jcsm.12137. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

836. Snyder GK. Capillary growth in chick skeletal muscle with normal maturation and hypertrophy. Respir Physiol 102: 293–301, 1995. doi: 10.1016/0034-5687(95)00060-7. [PubMed] [CrossRef] [Google Scholar]

837. Snyder GK, Farrelly C, Coelho JR. Adaptations in skeletal muscle capillarity following changes in oxygen supply and changes in oxygen demands. Eur J Appl Physiol Occup Physiol 65: 158–163, 1992. doi: 10.1007/BF00705074. [PubMed] [CrossRef] [Google Scholar]

838. Sobin SS, Bernick S, Ballard KW. Histochemical characterization of the aging microvasculature in the human and other mammalian and non-mammalian vertebrates by the periodic acid-Schiff reaction. Mech Ageing Dev 63: 183–192, 1992. doi: 10.1016/0047-6374(92)90064-K. [PubMed] [CrossRef] [Google Scholar]

839. Son Y-J, Thompson WJ. Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells. Neuron 14: 133–141, 1995. doi: 10.1016/0896-6273(95)90247-3. [PubMed] [CrossRef] [Google Scholar]

840. Son Y-J, Thompson WJ. Schwann cell processes guide regeneration of peripheral axons. Neuron 14: 125–132, 1995. doi: 10.1016/0896-6273(95)90246-5. [PubMed] [CrossRef] [Google Scholar]

841. Song Z, Moore DR, Hodson N, Ward C, Dent JR, O’Leary MF, Shaw AM, Hamilton DL, Sarkar S, Gangloff YG, Hornberger TA, Spriet LL, Heigenhauser GJ, Philp A. Resistance exercise initiates mechanistic target of rapamycin (mTOR) translocation and protein complex co-localisation in human skeletal muscle. Sci Rep 7: 5028, 2017. doi: 10.1038/s41598-017-05483-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

842. Sonntag WE, Steger RW, Forman LJ, Meites J. Decreased pulsatile release of growth hormone in old male rats. Endocrinology 107: 1875–1879, 1980. doi: 10.1210/endo-107-6-1875. [PubMed] [CrossRef] [Google Scholar]

843. Soubannier V, McLelland GL, Zunino R, Braschi E, Rippstein P, Fon EA, McBride HM. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr Biol 22: 135–141, 2012. doi: 10.1016/j.cub.2011.11.057. [PubMed] [CrossRef] [Google Scholar]

844. Soubannier V, Rippstein P, Kaufman BA, Shoubridge EA, McBride HM. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS One 7: e52830, 2012. doi: 10.1371/journal.pone.0052830. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

845. Spendiff S, Vuda M, Gouspillou G, Aare S, Perez A, Morais JA, Jagoe RT, Filion ME, Glicksman R, Kapchinsky S, MacMillan NJ, Pion CH, Aubertin-Leheudre M, Hettwer S, Correa JA, Taivassalo T, Hepple RT. Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians. J Physiol 594: 7361–7379, 2016. doi: 10.1113/JP272487. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

846. Spinazzi M, Casarin A, Pertegato V, Ermani M, Salviati L, Angelini C. Optimization of respiratory chain enzymatic assays in muscle for the diagnosis of mitochondrial disorders. Mitochondrion 11: 893–904, 2011. doi: 10.1016/j.mito.2011.07.006. [PubMed] [CrossRef] [Google Scholar]

847. Stålberg E, Fawcett PR. Macro EMG in healthy subjects of different ages. J Neurol Neurosurg Psychiatry 45: 870–878, 1982. doi: 10.1136/jnnp.45.10.870. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

848. Stienen GJ, Kiers JL, Bottinelli R, Reggiani C. Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre type and temperature dependence. J Physiol 493: 299–307, 1996. doi: 10.1113/jphysiol.1996.sp021384. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

849. Stiles AR, Simon MT, Stover A, Eftekharian S, Khanlou N, Wang HL, Magaki S, Lee H, Partynski K, Dorrani N, Chang R, Martinez-Agosto JA, Abdenur JE. Mutations in TFAM, encoding mitochondrial transcription factor A, cause neonatal liver failure associated with mtDNA depletion. Mol Genet Metab 119: 91–99, 2016. doi: 10.1016/j.ymgme.2016.07.001. [PubMed] [CrossRef] [Google Scholar]

850. Strauss KA, Jinks RN, Puffenberger EG, Venkatesh S, Singh K, Cheng I, Mikita N, Thilagavathi J, Lee J, Sarafianos S, Benkert A, Koehler A, Zhu A, Trovillion V, McGlincy M, Morlet T, Deardorff M, Innes AM, Prasad C, Chudley AE, Lee IN, Suzuki CK. CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA+ Lon protease. Am J Hum Genet 96: 121–135, 2015. doi: 10.1016/j.ajhg.2014.12.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

851. Street SF. Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. J Cell Physiol 114: 346–364, 1983. doi: 10.1002/jcp.1041140314. [PubMed] [CrossRef] [Google Scholar]

852. Stålberg E, Ekstedt J. Single fibre EMG and microphysiology of the motor unit in normal and diseased human muscle, in New developments in EMG and Clinical Neurophysiology (Desmedt J, editor). Basel: S. Karger, 1973, p. 113–129. [Google Scholar]

853. Suetta C, Hvid LG, Justesen L, Christensen U, Neergaard K, Simonsen L, Ortenblad N, Magnusson SP, Kjaer M, Aagaard P. Effects of aging on human skeletal muscle after immobilization and retraining. J Appl Physiol (1985) 107: 1172–1180, 2009. doi: 10.1152/japplphysiol.00290.2009. [PubMed] [CrossRef] [Google Scholar]

854. Suetta C, Magnusson SP, Rosted A, Aagaard P, Jakobsen AK, Larsen LH, Duus B, Kjaer M. Resistance training in the early postoperative phase reduces hospitalization and leads to muscle hypertrophy in elderly hip surgery patients–a controlled, randomized study. J Am Geriatr Soc 52: 2016–2022, 2004. doi: 10.1111/j.1532-5415.2004.52557.x. [PubMed] [CrossRef] [Google Scholar]

855. Sugiura T, Matoba H, Miyata H, Kawai Y, Murakami N. Myosin heavy chain isoform transition in ageing fast and slow muscles of the rat. Acta Physiol Scand 144: 419–423, 1992. doi: 10.1111/j.1748-1716.1992.tb09315.x. [PubMed] [CrossRef] [Google Scholar]

856. Sultan KR, Dittrich BT, Leisner E, Paul N, Pette D. Fiber type-specific expression of major proteolytic systems in fast- to slow-transforming rabbit muscle. Am J Physiol Cell Physiol 280: C239–C247, 2001. doi: 10.1152/ajpcell.2001.280.2.C239. [PubMed] [CrossRef] [Google Scholar]

857. Suzuki M, Okamura T, Shimazu Y, Takahashi H, Eguchi K, Kano K, Tsuchiya S. [A study of falls experienced by institutionalized elderly]. Nihon Koshu Eisei Zasshi 39: 927–940, 1992. [PubMed] [Google Scholar]

858. Swallow M. Fibre size and content of the anterior tibial nerve of the foot. J Neurol Neurosurg Psychiatry 29: 205–213, 1966. doi: 10.1136/jnnp.29.3.205. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

859. Sweeney HL, Kushmerick MJ, Mabuchi K, Sréter FA, Gergely J. Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibers. J Biol Chem 263: 9034–9039, 1988. [PubMed] [Google Scholar]

860. Swerdloff RS, Wang C. Androgens and aging in men. Exp Gerontol 28: 435–446, 1993. doi: 10.1016/0531-5565(93)90069-P. [PubMed] [CrossRef] [Google Scholar]

861. Syrový I, Gutmann E. Changes in speed of contraction and ATPase activity in striated muscle during old age. Exp Gerontol 5: 31–35, 1970. doi: 10.1016/0531-5565(70)90026-4. [PubMed] [CrossRef] [Google Scholar]

862. Syrový I, Hodný Z. Non-enzymatic glycosylation of myosin: effects of diabetes and ageing. Gen Physiol Biophys 11: 301–307, 1992. [PubMed] [Google Scholar]

863. Takahashi A, Kureishi Y, Yang J, Luo Z, Guo K, Mukhopadhyay D, Ivashchenko Y, Branellec D, Walsh K. Myogenic Akt signaling regulates blood vessel recruitment during myofiber growth. Mol Cell Biol 22: 4803–4814, 2002. doi: 10.1128/MCB.22.13.4803-4814.2002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

864. Takahashi K. A clinicopathologic study on the peripheral nervous system of the aged. Sciatic nerve and autonomic nervous system. Geriatrics 21: 123–133, 1966. [PubMed] [Google Scholar]

865. Tamaki T, Hirata M, Uchiyama Y. Qualitative alteration of peripheral motor system begins prior to appearance of typical sarcopenia syndrome in middle-aged rats. Front Aging Neurosci 6: 296, 2014. doi: 10.3389/fnagi.2014.00296. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

866. Tang K, Breen EC, Gerber HP, Ferrara NM, Wagner PD. Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiol Genomics 18: 63–69, 2004. doi: 10.1152/physiolgenomics.00023.2004. [PubMed] [CrossRef] [Google Scholar]

867. Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, Khosla S, Jensen MD, Kirkland JL. Fat tissue, aging, and cellular senescence. Aging Cell 9: 667–684, 2010. doi: 10.1111/j.1474-9726.2010.00608.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

868. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123: 966–972, 2013. doi: 10.1172/JCI64098. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

869. Tengan CH, Moraes CT. Duplication and triplication with staggered breakpoints in human mitochondrial DNA. Biochim Biophys Acta 1406: 73–80, 1998. doi: 10.1016/S0925-4439(97)00087-2. [PubMed] [CrossRef] [Google Scholar]

870. Tezze C, Romanello V, Desbats MA, Fadini GP, Albiero M, Favaro G, Ciciliot S, Soriano ME, Morbidoni V, Cerqua C, Loefler S, Kern H, Franceschi C, Salvioli S, Conte M, Blaauw B, Zampieri S, Salviati L, Scorrano L, Sandri M. Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence. Cell Metab 25: 1374–1389.e6, 2017. doi: 10.1016/j.cmet.2017.04.021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

871. Thiele JR, Habersberger J, Braig D, Schmidt Y, Goerendt K, Maurer V, Bannasch H, Scheichl A, Woollard KJ, von Dobschütz E, Kolodgie F, Virmani R, Stark GB, Peter K, Eisenhardt SU. Dissociation of pentameric to monomeric C-reactive protein localizes and aggravates inflammation: in vivo proof of a powerful proinflammatory mechanism and a new anti-inflammatory strategy. Circulation 130: 35–50, 2014. doi: 10.1161/CIRCULATIONAHA.113.007124. [PubMed] [CrossRef] [Google Scholar]

872. Thomason DB, Booth FW. Atrophy of the soleus muscle by hindlimb unweighting. J Appl Physiol (1985) 68: 1–12, 1990. doi: 10.1152/jappl.1990.68.1.1. [PubMed] [CrossRef] [Google Scholar]

873. Thompson D, Markovitch D, Betts JA, Mazzatti D, Turner J, Tyrrell RM. Time course of changes in inflammatory markers during a 6-mo exercise intervention in sedentary middle-aged men: a randomized-controlled trial. J Appl Physiol (1985) 108: 769–779, 2010. doi: 10.1152/japplphysiol.00822.2009. [PubMed] [CrossRef] [Google Scholar]

874. Thompson LV, Brown M. Age-related changes in contractile properties of single skeletal fibers from the soleus muscle. J Appl Physiol (1985) 86: 881–886, 1999. doi: 10.1152/jappl.1999.86.3.881. [PubMed] [CrossRef] [Google Scholar]

875. Thompson LV, Durand D, Fugere NA, Ferrington DA. Myosin and actin expression and oxidation in aging muscle. J Appl Physiol (1985) 101: 1581–1587, 2006. doi: 10.1152/japplphysiol.00426.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

876. Thompson RW, McClung JM, Baltgalvis KA, Davis JM, Carson JA. Modulation of overload-induced inflammation by aging and anabolic steroid administration. Exp Gerontol 41: 1136–1148, 2006. doi: 10.1016/j.exger.2006.08.013. [PubMed] [CrossRef] [Google Scholar]

877. Thompson W, Jansen JKS. The extent of sprouting of remaining motor units in partly denervated immature and adult rat soleus muscle. Neuroscience 2: 523–535, 1977. doi: 10.1016/0306-4522(77)90049-5. [PubMed] [CrossRef] [Google Scholar]

878. Tidball JG. Regulation of muscle growth and regeneration by the immune system. Nat Rev Immunol 17: 165–178, 2017. doi: 10.1038/nri.2016.150. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

879. Tierney MT, Aydogdu T, Sala D, Malecova B, Gatto S, Puri PL, Latella L, Sacco A. STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med 20: 1182–1186, 2014. doi: 10.1038/nm.3656. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

880. Tintignac LA, Brenner HR, Rüegg MA. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiol Rev 95: 809–852, 2015. doi: 10.1152/physrev.00033.2014. [PubMed] [CrossRef] [Google Scholar]

881. Tisdale MJ. The ubiquitin-proteasome pathway as a therapeutic target for muscle wasting. J Support Oncol 3: 209–217, 2005. [PubMed] [Google Scholar]

882. Tohgi H, Tsukagoshi H, Toyokura Y. Quantitative changes with age in normal sural nerves. Acta Neuropathol 38: 213–220, 1977. doi: 10.1007/BF00688067. [PubMed] [CrossRef] [Google Scholar]

883. Tokuhiro E, Dean HJ, Friesen HG, Rudman D. Comparative study of serum human growth hormone measurement with NB2 lymphoma cell bioassay, IM-9 receptor modulation assay, and radioimmunoassay in children with disorders of growth. J Clin Endocrinol Metab 58: 549–554, 1984. doi: 10.1210/jcem-58-3-549. [PubMed] [CrossRef] [Google Scholar]

884. Tollbäck A, Knutsson E, Borg J, Borg K, Jakobsson F. Torque-velocity relation and muscle fibre characteristics of foot dorsiflexors after long-term overuse of residual muscle fibres due to prior polio or L5 root lesion. Scand J Rehabil Med 24: 151–156, 1992. [PubMed] [Google Scholar]

885. Tomlinson BE, Irving D. The numbers of limb motor neurons in the human lumbosacral cord throughout life. J Neurol Sci 34: 213–219, 1977. doi: 10.1016/0022-510X(77)90069-7. [PubMed] [CrossRef] [Google Scholar]

885a. Tomlinson DJ, Erskine RM, Morse CI, Winwood K, Onambele-Pearson G. The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology 17: 467–483, 2016. [PMC free article] [PubMed] [Google Scholar]

886. Tomonaga M. Histochemical and ultrastructural changes in senile human skeletal muscle. J Am Geriatr Soc 25: 125–131, 1977. doi: 10.1111/j.1532-5415.1977.tb00274.x. [PubMed] [CrossRef] [Google Scholar]

887. Touvier T, De Palma C, Rigamonti E, Scagliola A, Incerti E, Mazelin L, Thomas JL, D’Antonio M, Politi L, Schaeffer L, Clementi E, Brunelli S. Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation. Cell Death Dis 6: e1663, 2015. doi: 10.1038/cddis.2014.595. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

888. Towne C, Montgomery KL, Iyer SM, Deisseroth K, Delp SL. Optogenetic control of targeted peripheral axons in freely moving animals. PLoS One 8: e72691, 2013. doi: 10.1371/journal.pone.0072691. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

889. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 296: C1258–C1270, 2009. doi: 10.1152/ajpcell.00105.2009. [PubMed] [CrossRef] [Google Scholar]

890. Trevisson E, DiMauro S, Navas P, Salviati L. Coenzyme Q deficiency in muscle. Curr Opin Neurol 24: 449–456, 2011. doi: 10.1097/WCO.0b013e32834ab528. [PubMed] [CrossRef] [Google Scholar]

891. Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I, Spelbrink JN, Wibom R, Jacobs HT, Larsson NG. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci USA 102: 17993–17998, 2005. doi: 10.1073/pnas.0508886102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

892. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlöf S, Oldfors A, Wibom R, Törnell J, Jacobs HT, Larsson NG. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429: 417–423, 2004. doi: 10.1038/nature02517. [PubMed] [CrossRef] [Google Scholar]

893. Trounce I, Byrne E, Marzuki S. Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet 333: 637–639, 1989. doi: 10.1016/S0140-6736(89)92143-0. [PubMed] [CrossRef] [Google Scholar]

894. Troy A, Cadwallader AB, Fedorov Y, Tyner K, Tanaka KK, Olwin BB. Coordination of satellite cell activation and self-renewal by Par-complex-dependent asymmetric activation of p38α/β MAPK. Cell Stem Cell 11: 541–553, 2012. doi: 10.1016/j.stem.2012.05.025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

895. Tseng BS, Kasper CE, Edgerton VR. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers. Cell Tissue Res 275: 39–49, 1994. doi: 10.1007/BF00305374. [PubMed] [CrossRef] [Google Scholar]

896. Tsuru M, Nagata K, Jimi A, Irie K, Yamada A, Nagai R, Horiuchi S, Sata M. Effect of AGEs on human disc herniation: intervertebral disc hernia is also effected by AGEs. Kurume Med J 49: 7–13, 2002. doi: 10.2739/kurumemedj.49.7. [PubMed] [CrossRef] [Google Scholar]

897. Tuffery AR. Growth and degeneration of motor end-plates in normal cat hind limb muscles. J Anat 110: 221–247, 1971. [PMC free article] [PubMed] [Google Scholar]

898. Turek Z, Olders J, Hoofd L, Egginton S, Kreuzer F, Rakusan K. PO2 histograms in various models of tissue oxygenation in skeletal muscle. Adv Exp Med Biol 248: 227–237, 1989. doi: 10.1007/978-1-4684-5643-1_27. [PubMed] [CrossRef] [Google Scholar]

899. Turney SG, Lichtman JW. Reversing the outcome of synapse elimination at developing neuromuscular junctions in vivo: evidence for synaptic competition and its mechanism. PLoS Biol 10: e1001352, 2012. doi: 10.1371/journal.pbio.1001352. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

900. Turney SG, Walsh MK, Lichtman JW. In vivo imaging of the developing neuromuscular junction in neonatal mice. Cold Spring Harb Protoc 2012: 1166–1176, 2012. doi: 10.1101/pdb.prot072082. [PubMed] [CrossRef] [Google Scholar]

901. Tyml K, Mathieu-Costello O. Structural and functional changes in the microvasculature of disused skeletal muscle. Front Biosci 6: D45–D52, 2001. doi: 10.2741/A592. [PubMed] [CrossRef] [Google Scholar]

902. Tzekova N, Heinen A, Küry P. Molecules involved in the crosstalk between immune- and peripheral nerve Schwann cells. J Clin Immunol 34, Suppl 1: S86–S104, 2014. doi: 10.1007/s10875-014-0015-6. [PubMed] [CrossRef] [Google Scholar]

902a. Vijg J, de Grey AD. Innovating aging: promises and pitfalls on the road to life extension. Gerontology 60: 373–380, 2014. [PMC free article] [PubMed] [Google Scholar]

903. Wachsmuth M, Hübner A, Li M, Madea B, Stoneking M. Age-Related and Heteroplasmy-Related Variation in Human mtDNA Copy Number. PLoS Genet 12: e1005939, 2016. doi: 10.1371/journal.pgen.1005939. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

904. Wadley AJ, Veldhuijzen van Zanten JJ, Aldred S. The interactions of oxidative stress and inflammation with vascular dysfunction in ageing: the vascular health triad. Age (Dordr) 35: 705–718, 2013. doi: 10.1007/s11357-012-9402-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

905. Wagenmakers AJ, Strauss JA, Shepherd SO, Keske MA, Cocks M. Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing. J Physiol 594: 2207–2222, 2016. doi: 10.1113/jphysiol.2014.284513. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

906. Vainshtein A, Desjardins EM, Armani A, Sandri M, Hood DA. PGC-1α modulates denervation-induced mitophagy in skeletal muscle. Skelet Muscle 5: 9, 2015. doi: 10.1186/s13395-015-0033-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

907. Valdez G, Tapia JC, Kang H, Clemenson GD Jr, Gage FH, Lichtman JW, Sanes JR. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci USA 107: 14863–14868, 2010. doi: 10.1073/pnas.1002220107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

908. Valdez G, Tapia JC, Kang H, Clemenson GD Jr, Gage FH, Lichtman JW, Sanes JR. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci USA 107: 14863–14868, 2010. doi: 10.1073/pnas.1002220107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

909. Valdez G, Tapia JC, Lichtman JW, Fox MA, Sanes JR. Shared resistance to aging and ALS in neuromuscular junctions of specific muscles. PLoS One 7: e34640, 2012. doi: 10.1371/journal.pone.0034640. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

910. Walsh MK, Lichtman JW. In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination. Neuron 37: 67–73, 2003. doi: 10.1016/S0896-6273(02)01142-X. [PubMed] [CrossRef] [Google Scholar]

911. Walters TJ, Sweeney HL, Farrar RP. Influence of electrical stimulation on a fast-twitch muscle in aging rats. J Appl Physiol (1985) 71: 1921–1928, 1991. doi: 10.1152/jappl.1991.71.5.1921. [PubMed] [CrossRef] [Google Scholar]

912. van der Meer SF, Jaspers RT, Jones DA, Degens H. The time course of myonuclear accretion during hypertrophy in young adult and older rat plantaris muscle. Ann Anat 193: 56–63, 2011. doi: 10.1016/j.aanat.2010.08.004. [PubMed] [CrossRef] [Google Scholar]

913. Van Mier P, Lichtman JW. Regeneration of single laser-ablated motor axons and the reoccupation of postsynaptic sites followed in living mice. Soc Neurosci Abstr 15: 334, 1989. [Google Scholar]

914. van Norren K, Rusli F, van Dijk M, Lute C, Nagel J, Dijk FJ, Dwarkasing J, Boekschoten MV, Luiking Y, Witkamp RF, Müller M, Steegenga WT. Behavioural changes are a major contributing factor in the reduction of sarcopenia in caloric-restricted ageing mice. J Cachexia Sarcopenia Muscle 6: 253–268, 2015. doi: 10.1002/jcsm.12024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

915. Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang TT, Nelson J, Strong R, Richardson A. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16: 29–37, 2003. doi: 10.1152/physiolgenomics.00122.2003. [PubMed] [CrossRef] [Google Scholar]

916. van Steenis G, Kroes R. Changes in the nervous system and musculature of old rats. Vet Pathol 8: 320–332, 1971. doi: 10.1177/030098587100800404. [PubMed] [CrossRef] [Google Scholar]

917. van Wessel T, de Haan A, van der Laarse WJ, Jaspers RT. The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism? Eur J Appl Physiol 110: 665–694, 2010. doi: 10.1007/s00421-010-1545-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

918. Wanagat J, Cao Z, Pathare P, Aiken JM. Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J 15: 322–332, 2001. doi: 10.1096/fj.00-0320com. [PubMed] [CrossRef] [Google Scholar]

919. Wang E. Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res 55: 2284–2292, 1995. [PubMed] [Google Scholar]

920. Wang JC, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 111: 245–259, 2012. doi: 10.1161/CIRCRESAHA.111.261388. [PubMed] [CrossRef] [Google Scholar]

921. Wang Y, Hekimi S. Mitochondrial dysfunction and longevity in animals: Untangling the knot. Science 350: 1204–1207, 2015. doi: 10.1126/science.aac4357. [PubMed] [CrossRef] [Google Scholar]

922. Wang Y, Oxer D, Hekimi S. Mitochondrial function and lifespan of mice with controlled ubiquinone biosynthesis. Nat Commun 6: 6393, 2015. doi: 10.1038/ncomms7393. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

923. Wang ZM, Leng X, Messi ML, Choi SJ, Marsh AP, Nicklas B, Delbono O. Relationship of Physical Function to Single Muscle Fiber Contractility in Older Adults: Effects of Resistance Training with and without Caloric Restriction. J Gerontol A Biol Sci Med Sci, 2018. doi: 10.1093/gerona/gly047. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

924. Varanita T, Soriano ME, Romanello V, Zaglia T, Quintana-Cabrera R, Semenzato M, Menabò R, Costa V, Civiletto G, Pesce P, Viscomi C, Zeviani M, Di Lisa F, Mongillo M, Sandri M, Scorrano L. The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab 21: 834–844, 2015. doi: 10.1016/j.cmet.2015.05.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

925. Watanabe H, Ogasawara M, Suzuki N, Nishizawa N, Ambo K. Glycation of myofibrillar protein in aged rats and mice. Biosci Biotechnol Biochem 56: 1109–1112, 1992. doi: 10.1271/bbb.56.1109. [PubMed] [CrossRef] [Google Scholar]

926. Watkins SC, Cullen MJ. A quantitative comparison of satellite cell ultrastructure in Duchenne muscular dystrophy, polymyositis, and normal controls. Muscle Nerve 9: 724–730, 1986. doi: 10.1002/mus.880090808. [PubMed] [CrossRef] [Google Scholar]

927. Welle S, Bhatt K, Shah B, Thornton C. Insulin-like growth factor-1 and myostatin mRNA expression in muscle: comparison between 62-77 and 21-31 yr old men. Exp Gerontol 37: 833–839, 2002. doi: 10.1016/S0531-5565(02)00025-6. [PubMed] [CrossRef] [Google Scholar]

928. Welle S, Bhatt K, Thornton CA. High-abundance mRNAs in human muscle: comparison between young and old. J Appl Physiol (1985) 89: 297–304, 2000. doi: 10.1152/jappl.2000.89.1.297. [PubMed] [CrossRef] [Google Scholar]

929. Welle S, Brooks AI, Delehanty JM, Needler N, Bhatt K, Shah B, Thornton CA. Skeletal muscle gene expression profiles in 20-29 year old and 65-71 year old women. Exp Gerontol 39: 369–377, 2004. doi: 10.1016/j.exger.2003.11.011. [PubMed] [CrossRef] [Google Scholar]

930. Welle S, Brooks AI, Delehanty JM, Needler N, Thornton CA. Gene expression profile of aging in human muscle. Physiol Genomics 14: 149–159, 2003. doi: 10.1152/physiolgenomics.00049.2003. [PubMed] [CrossRef] [Google Scholar]

931. Welle S, Thornton C, Jozefowicz R, Statt M. Myofibrillar protein synthesis in young and old men. Am J Physiol 264: E693–E698, 1993. [PubMed] [Google Scholar]

932. Welle S, Totterman S, Thornton C. Effect of age on muscle hypertrophy induced by resistance training. J Gerontol A Biol Sci Med Sci 51: M270–M275, 1996. doi: 10.1093/gerona/51A.6.M270. [PubMed] [CrossRef] [Google Scholar]

933. Verdijk LB, Snijders T, Holloway TM, VAN Kranenburg J, VAN Loon LJ. Resistance Training Increases Skeletal Muscle Capillarization in Healthy Older Men. Med Sci Sports Exerc 48: 2157–2164, 2016. doi: 10.1249/MSS.0000000000001019. [PubMed] [CrossRef] [Google Scholar]

934. Vermeij WP, Dollé ME, Reiling E, Jaarsma D, Payan-Gomez C, Bombardieri CR, Wu H, Roks AJ, Botter SM, van der Eerden BC, Youssef SA, Kuiper RV, Nagarajah B, van Oostrom CT, Brandt RM, Barnhoorn S, Imholz S, Pennings JL, de Bruin A, Gyenis Á, Pothof J, Vijg J, van Steeg H, Hoeijmakers JH. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature 537: 427–431, 2016. doi: 10.1038/nature19329. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

935. Wernig A, Herrera AA. Sprouting and remodelling at the nerve-muscle junction. Prog Neurobiol 27: 251–291, 1986. doi: 10.1016/0301-0082(86)90023-7. [PubMed] [CrossRef] [Google Scholar]

936. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, Catalano JV, Deininger M, Miller C, Silver RT, Talpaz M, Winton EF, Harvey JH Jr, Arcasoy MO, Hexner E, Lyons RM, Paquette R, Raza A, Vaddi K, Erickson-Viitanen S, Sun W, Sandor V, Kantarjian HM. The clinical benefit of ruxolitinib across patient subgroups: analysis of a placebo-controlled, Phase III study in patients with myelofibrosis. Br J Haematol 161: 508–516, 2013. doi: 10.1111/bjh.12274. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

937. Vescovo G, Zennaro R, Sandri M, Carraro U, Leprotti C, Ceconi C, Ambrosio GB, Dalla Libera L. Apoptosis of skeletal muscle myofibers and interstitial cells in experimental heart failure. J Mol Cell Cardiol 30: 2449–2459, 1998. doi: 10.1006/jmcc.1998.0807. [PubMed] [CrossRef] [Google Scholar]

938. Wheeler SJ, Plummer JM. Age-related changes in the fibre composition of equine peripheral nerve. J Neurol Sci 90: 53–66, 1989. doi: 10.1016/0022-510X(89)90045-2. [PubMed] [CrossRef] [Google Scholar]

939. Whipple RH, Wolfson LI, Amerman PM. The relationship of knee and ankle weakness to falls in nursing home residents: an isokinetic study. J Am Geriatr Soc 35: 13–20, 1987. doi: 10.1111/j.1532-5415.1987.tb01313.x. [PubMed] [CrossRef] [Google Scholar]

940. White Z, Terrill J, White RB, McMahon C, Sheard P, Grounds MD, Shavlakadze T. Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice. Skelet Muscle 6: 45, 2016. doi: 10.1186/s13395-016-0117-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

941. White Z, White RB, McMahon C, Grounds MD, Shavlakadze T. High mTORC1 signaling is maintained, while protein degradation pathways are perturbed in old murine skeletal muscles in the fasted state. Int J Biochem Cell Biol 78: 10–21, 2016. doi: 10.1016/j.biocel.2016.06.012. [PubMed] [CrossRef] [Google Scholar]

942. Whitehouse AS, Smith HJ, Drake JL, Tisdale MJ. Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Res 61: 3604–3609, 2001. [PubMed] [Google Scholar]

943. Whitman SA, Wacker MJ, Richmond SR, Godard MP. Contributions of the ubiquitin-proteasome pathway and apoptosis to human skeletal muscle wasting with age. Pflugers Arch 450: 437–446, 2005. doi: 10.1007/s00424-005-1473-8. [PubMed] [CrossRef] [Google Scholar]

944. Wigston DJ. Remodeling of neuromuscular junctions in adult mouse soleus. J Neurosci 9: 639–647, 1989. doi: 10.1523/JNEUROSCI.09-02-00639.1989. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

945. Wigston DJ. Repeated in vivo visualization of neuromuscular junctions in adult mouse lateral gastrocnemius. J Neurosci 10: 1753–1761, 1990. doi: 10.1523/JNEUROSCI.10-06-01753.1990. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

946. Viguie CA, Lu DX, Huang SK, Rengen H, Carlson BM. Quantitative study of the effects of long-term denervation on the extensor digitorum longus muscle of the rat. Anat Rec 248: 346–354, 1997. doi: 10.1002/(SICI)1097-0185(199707)248:3<346::AID-AR7>3.0.CO;2-N. [PubMed] [CrossRef] [Google Scholar]

947. Willadt S, Nash M, Slater CR. Age-related fragmentation of the motor endplate is not associated with impaired neuromuscular transmission in the mouse diaphragm. Sci Rep 6: 24849, 2016. doi: 10.1038/srep24849. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

948. Williams JL, Cartland D, Rudge JS, Egginton S. VEGF trap abolishes shear stress- and overload-dependent angiogenesis in skeletal muscle. Microcirculation 13: 499–509, 2006. doi: 10.1080/10739680600785717. [PubMed] [CrossRef] [Google Scholar]

949. Williamson JR, Hoffmann PL, Kohrt WM, Spina RJ, Coggan AR, Holloszy O. Endurance exercise training decreases capillary basement membrane width in older nondiabetic and diabetic adults. J Appl Physiol (1985) 80: 747–753, 1996. doi: 10.1152/jappl.1996.80.3.747. [PubMed] [CrossRef] [Google Scholar]

950. Winbanks CE, Chen JL, Qian H, Liu Y, Bernardo BC, Beyer C, Watt KI, Thomson RE, Connor T, Turner BJ, McMullen JR, Larsson L, McGee SL, Harrison CA, Gregorevic P. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. J Cell Biol 203: 345–357, 2013. doi: 10.1083/jcb.201211134. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

951. Vincent JL. Critical care–where have we been and where are we going? Crit Care 17, Suppl 1: S2, 2013. [PMC free article] [PubMed] [Google Scholar]

952. Viner RI, Ferrington DA, Hühmer AF, Bigelow DJ, Schöneich C. Accumulation of nitrotyrosine on the SERCA2a isoform of SR Ca-ATPase of rat skeletal muscle during aging: a peroxynitrite-mediated process? FEBS Lett 379: 286–290, 1996. doi: 10.1016/0014-5793(95)01530-2. [PubMed] [CrossRef] [Google Scholar]

953. Wink DA, Nims RW, Darbyshire JF, Christodoulou D, Hanbauer I, Cox GW, Laval F, Laval J, Cook JA, Krishna MC. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem Res Toxicol 7: 519–525, 1994. doi: 10.1021/tx00040a007. [PubMed] [CrossRef] [Google Scholar]

954. Viscomi C, Bottani E, Civiletto G, Cerutti R, Moggio M, Fagiolari G, Schon EA, Lamperti C, Zeviani M. In vivo correction of COX deficiency by activation of the AMPK/PGC-1α axis. Cell Metab 14: 80–90, 2011. doi: 10.1016/j.cmet.2011.04.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

955. Viscomi C, Bottani E, Zeviani M. Emerging concepts in the therapy of mitochondrial disease. Biochim Biophys Acta 1847: 544–557, 2015. doi: 10.1016/j.bbabio.2015.03.001. [PubMed] [CrossRef] [Google Scholar]

956. Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB, Nevitt M, Harris TB. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J Gerontol A Biol Sci Med Sci 57: M326–M332, 2002. doi: 10.1093/gerona/57.5.M326. [PubMed] [CrossRef] [Google Scholar]

956a. Wang H, Listrat A, Meunier B, Gueugneau M, Coudy-Gandilhon C, Combaret L, Taillandier D, Polge C, Attaix D, Lethias C, Lee K, Goh KL, Bechet D. Apoptosis in capillary endothelial cells in ageing skeletal muscle. Aging Cell 13: 254–262, 2014. [PMC free article] [PubMed] [Google Scholar]

957. Woeber KA. Thyrotoxicosis and the heart. N Engl J Med 327: 94–98, 1992. doi: 10.1056/NEJM199207093270206. [PubMed] [CrossRef] [Google Scholar]

958. Wohlgemuth SE, Seo AY, Marzetti E, Lees HA, Leeuwenburgh C. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 45: 138–148, 2010. doi: 10.1016/j.exger.2009.11.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

959. Wokke JHJ, Jennekens FGI, van den Oord CJM, Veldman H, Smit LME, Leppink GJ. Morphological changes in the human end plate with age. J Neurol Sci 95: 291–310, 1990. doi: 10.1016/0022-510X(90)90076-Y. [PubMed] [CrossRef] [Google Scholar]

960. von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA. Wnt signaling in myogenesis. Trends Cell Biol 22: 602–609, 2012. doi: 10.1016/j.tcb.2012.07.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

961. von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci USA 110: 16474–16479, 2013. doi: 10.1073/pnas.1307680110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

962. Wood RD, Mitchell M, Lindahl T. Human DNA repair genes, 2005. Mutat Res 577: 275–283, 2005. doi: 10.1016/j.mrfmmm.2005.03.007. [PubMed] [CrossRef] [Google Scholar]

963. Woods D, Onambele G, Woledge R, Skelton D, Bruce S, Humphries SE, Montgomery H. Angiotensin-I converting enzyme genotype-dependent benefit from hormone replacement therapy in isometric muscle strength and bone mineral density. J Clin Endocrinol Metab 86: 2200–2204, 2001. [PubMed] [Google Scholar]

964. Wright EA, Spink JM. A study of the loss of nerve cells in the central nervous system in relation to age. Gerontologia 3: 277–287, 1959. doi: 10.1159/000210907. [PubMed] [CrossRef] [Google Scholar]

965. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115–124, 1999. doi: 10.1016/S0092-8674(00)80611-X. [PubMed] [CrossRef] [Google Scholar]

966. Wu Z, Puigserver P, Spiegelman BM. Transcriptional activation of adipogenesis. Curr Opin Cell Biol 11: 689–694, 1999. doi: 10.1016/S0955-0674(99)00037-X. [PubMed] [CrossRef] [Google Scholar]

967. Wullems JA, Verschueren SM, Degens H, Morse CI, Onambélé GL. A review of the assessment and prevalence of sedentarism in older adults, its physiology/health impact and non-exercise mobility counter-measures. Biogerontology 17: 547–565, 2016. doi: 10.1007/s10522-016-9640-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

968. Wüst RC, Degens H. Factors contributing to muscle wasting and dysfunction in COPD patients. Int J Chron Obstruct Pulmon Dis 2: 289–300, 2007. [PMC free article] [PubMed] [Google Scholar]

969. Wüst RC, Gibbings SL, Degens H. Fiber capillary supply related to fiber size and oxidative capacity in human and rat skeletal muscle. Adv Exp Med Biol 645: 75–80, 2009. doi: 10.1007/978-0-387-85998-9_12. [PubMed] [CrossRef] [Google Scholar]

970. Wüst RC, Jaspers RT, van Heijst AF, Hopman MT, Hoofd LJ, van der Laarse WJ, Degens H. Region-specific adaptations in determinants of rat skeletal muscle oxygenation to chronic hypoxia. Am J Physiol Heart Circ Physiol 297: H364–H374, 2009. doi: 10.1152/ajpheart.00272.2009. [PubMed] [CrossRef] [Google Scholar]

971. Wüst RC, Morse CI, de Haan A, Jones DA, Degens H. Sex differences in contractile properties and fatigue resistance of human skeletal muscle. Exp Physiol 93: 843–850, 2008. doi: 10.1113/expphysiol.2007.041764. [PubMed] [CrossRef] [Google Scholar]

972. Xie LX, Ozeir M, Tang JY, Chen JY, Jaquinod SK, Fontecave M, Clarke CF, Pierrel F. Overexpression of the Coq8 kinase in Saccharomyces cerevisiae coq null mutants allows for accumulation of diagnostic intermediates of the coenzyme Q6 biosynthetic pathway. J Biol Chem 287: 23571–23581, 2012. doi: 10.1074/jbc.M112.360354. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

973. Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, Sepe A, Johnson KO, Stout MB, Giorgadze N, Jensen MD, LeBrasseur NK, Tchkonia T, Kirkland JL. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 4: e12997, 2015. doi: 10.7554/eLife.12997. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

974. Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, White TA, Johnson KO, Stout MB, Mezera V, Giorgadze N, Jensen MD, LeBrasseur NK, Kirkland JL. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci USA 112: E6301–E6310, 2015. doi: 10.1073/pnas.1515386112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

975. Yamazaki T. Effects of intermittent weight-bearing and clenbuterol on disuse atrophy of rat hindlimb muscles. J Jpn Phys Ther Assoc 8: 9–20, 2005. doi: 10.1298/jjpta.8.9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

976. Yang L, Licastro D, Cava E, Veronese N, Spelta F, Rizza W, Bertozzi B, Villareal DT, Hotamisligil GS, Holloszy JO, Fontana L. Long-Term Calorie Restriction Enhances Cellular Quality-Control Processes in Human Skeletal Muscle. Cell Reports 14: 422–428, 2016. doi: 10.1016/j.celrep.2015.12.042. [PubMed] [CrossRef] [Google Scholar]

977. Yang L, Licastro D, Cava E, Veronese N, Spelta F, Rizza W, Bertozzi B, Villareal DT, Hotamisligil GS, Holloszy JO, Fontana L. Long-Term Calorie Restriction Enhances Cellular Quality-Control Processes in Human Skeletal Muscle. Cell Reports 14: 422–428, 2016. doi: 10.1016/j.celrep.2015.12.042. [PubMed] [CrossRef] [Google Scholar]

978. Yao YM. Maintenance of axon terminals at synaptic sites in the absence of muscle fibers, in Current Issues in Neural Regeneration Research (Reier PJ, Bunge RP, Seil FJ, editors). New York: Alan R. Liss, Inc, 1988, p. 167–178. [Google Scholar]

979. Yarasheski KE, Zachwieja JJ, Bier DM. Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women [published erratum appears in Am J Physiol 1993 Oct;265(4 Pt 1):following table of contents]. Am J Physiol 265: E210–E214, 1993. [PubMed] [Google Scholar]

980. Yarasheski KE, Zachwieja JJ, Campbell JA, Bier DM. Effect of growth hormone and resistance exercise on muscle growth and strength in older men. Am J Physiol 268: E268–E276, 1995. [PubMed] [Google Scholar]

981. Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev 93: 23–67, 2013. doi: 10.1152/physrev.00043.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

982. Young A, Stokes M, Crowe M. Size and strength of the quadriceps muscles of old and young women. Eur J Clin Invest 14: 282–287, 1984. doi: 10.1111/j.1365-2362.1984.tb01182.x. [PubMed] [CrossRef] [Google Scholar]

983. Yu F, Degens H, Larsson L. The influence of thyroid hormone on myosin isoform composition and shortening velocity of single skeletal muscle fibres with special reference to ageing and gender. Acta Physiol Scand 167: 313–316, 1999. doi: 10.1046/j.1365-201x.1999.00620.x. [PubMed] [CrossRef] [Google Scholar]

984. Yu F, Degens H, Li X, Larsson L. Gender- and age-related differences in the regulatory influence of thyroid hormone on the contractility and myosin composition of single rat soleus muscle fibres. Pflugers Arch 437: 21–30, 1998. doi: 10.1007/s004240050741. [PubMed] [CrossRef] [Google Scholar]

985. Yu F, Hedström M, Cristea A, Dalén N, Larsson L. Effects of ageing and gender on contractile properties in human skeletal muscle and single fibres. Acta Physiol (Oxf) 190: 229–241, 2007. doi: 10.1111/j.1748-1716.2007.01699.x. [PubMed] [CrossRef] [Google Scholar]

986. Yuan Y, Cruzat VF, Newsholme P, Cheng J, Chen Y, Lu Y. Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis. Mech Ageing Dev 155: 10–21, 2016. doi: 10.1016/j.mad.2016.02.003. [PubMed] [CrossRef] [Google Scholar]

987. Zaglia T, Milan G, Ruhs A, Franzoso M, Bertaggia E, Pianca N, Carpi A, Carullo P, Pesce P, Sacerdoti D, Sarais C, Catalucci D, Krüger M, Mongillo M, Sandri M. Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy. J Clin Invest 124: 2410–2424, 2014. doi: 10.1172/JCI66339. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

988. Zane AC, Reiter DA, Shardell M, Cameron D, Simonsick EM, Fishbein KW, Studenski SA, Spencer RG, Ferrucci L. Muscle strength mediates the relationship between mitochondrial energetics and walking performance. Aging Cell 16: 461–468, 2017. doi: 10.1111/acel.12568. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

989. Zechner C, Lai L, Zechner JF, Geng T, Yan Z, Rumsey JW, Collia D, Chen Z, Wozniak DF, Leone TC, Kelly DP. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab 12: 633–642, 2010. doi: 10.1016/j.cmet.2010.11.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

990. Zhang C, Linnane AW, Nagley P. Occurrence of a particular base substitution (3243 A to G) in mitochondrial DNA of tissues of ageing humans. Biochem Biophys Res Commun 195: 1104–1110, 1993. doi: 10.1006/bbrc.1993.2158. [PubMed] [CrossRef] [Google Scholar]

991. Zhong S, Lowe DA, Thompson LV. Effects of hindlimb unweighting and aging on rat semimembranosus muscle and myosin. J Appl Physiol (1985) 101: 873–880, 2006. doi: 10.1152/japplphysiol.00526.2005. [PubMed] [CrossRef] [Google Scholar]

992. Zhu Y, Armstrong JL, Tchkonia T, Kirkland JL. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care 17: 324–328, 2014. doi: 10.1097/MCO.0000000000000065. [PubMed] [CrossRef] [Google Scholar]

993. Zhu Y, Doornebal EJ, Pirtskhalava T, Giorgadze N, Wentworth M, Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD, Tchkonia T, Kirkland JL. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY) 9: 955–963, 2017. [PMC free article] [PubMed] [Google Scholar]

994. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB, Wren JD, Niedernhofer LJ, Robbins PD, Kirkland JL. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15: 428–435, 2016. doi: 10.1111/acel.12445. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

995. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, O’Hara SP, LaRusso NF, Miller JD, Roos CM, Verzosa GC, LeBrasseur NK, Wren JD, Farr JN, Khosla S, Stout MB, McGowan SJ, Fuhrmann-Stroissnigg H, Gurkar AU, Zhao J, Colangelo D, Dorronsoro A, Ling YY, Barghouthy AS, Navarro DC, Sano T, Robbins PD, Niedernhofer LJ, Kirkland JL. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14: 644–658, 2015. doi: 10.1111/acel.12344. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

996. Zhuo L, Sun B, Zhang C-L, Fine A, Chiu S-Y, Messing A. Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev Biol 187: 36–42, 1997. doi: 10.1006/dbio.1997.8601. [PubMed] [CrossRef] [Google Scholar]

997. Zilberberg MD, Shorr AF. Prolonged acute mechanical ventilation and hospital bed utilization in 2020 in the United States: implications for budgets, plant and personnel planning. BMC Health Serv Res 8: 242, 2008. doi: 10.1186/1472-6963-8-242. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

998. Zuo Y, Lubischer JL, Kang H, Tian L, Mikesh M, Marks A, Scofield VL, Maika S, Newman C, Krieg P, Thompson WJ. Fluorescent proteins expressed in mouse transgenic lines mark subsets of glia, neurons, macrophages, and dendritic cells for vital examination. J Neurosci 24: 10999–11009, 2004. doi: 10.1523/JNEUROSCI.3934-04.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

999. Zurcher C, Slagboom P. Basic aspects of aging. Washington, D.C.: ILSI Press, 1994. [Google Scholar]

1000. Zurcher C, van Zwieten MJ, Solleveld HA, Hollander CF.. Aging research. In: The mouse in biomedical research, edited by Foster HL, Fox JG. New York: Academic, 1982, p. 11–25. [Google Scholar]

In which age range does the rate of decline in muscle mass and strength tend to accelerate?

Muscle mass decreases approximately 3–8% per decade after the age of 30 and this rate of decline is even higher after the age of 60 [4,5]. This involuntary loss of muscle mass, strength, and function is a fundamental cause of and contributor to disability in older people.

What is the earliest at which some men's reproductive ability can begin declining?

Another study that evaluated the relationship between age and semen parameters also concluded that male fertility decline begins at 35, and suggested that male fertility peaks between 30 and 35. Bottom line: Men generally see a decrease in fertility beginning at 35, and the decline progresses from there.

At what age do most men experience hearing loss quizlet?

Although some conditions are hereditary, most involve presbycusis. C) Most people begin to experience hearing loss at around 50 years of age.

At which age do virtually all adults experience presbyopia and require reading glasses or other corrective options group of answer choices?

Almost everyone experiences some degree of presbyopia after age 40. Other medical conditions. Being farsighted or having certain diseases — such as diabetes, multiple sclerosis or cardiovascular diseases — can increase your risk of premature presbyopia, which is presbyopia in people younger than 40.