What is the importance of evolutionary biology in the field of health sciences?

  • Alföldi, J. & Lindblad-Toh, K. Comparative genomics as a tool to understand evolution and disease. Genome Res. 23, 1063–1068 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Meadows, J. R. S. & Lindblad-Toh, K. Dissecting evolution and disease using comparative vertebrate genomics. Nat. Rev. Genet. 18, 624–636 (2017).

    CAS  PubMed  Google Scholar 

  • Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 345–353 (2017).

    CAS  PubMed  Google Scholar 

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dewey, F. E. et al. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study. Science 354, aaf6814 (2016).

    PubMed  Google Scholar 

  • McCarty, C. A. et al. The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med. Genomics 4, 13 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Timpson, N. J., Greenwood, C. M. T., Soranzo, N., Lawson, D. J. & Richards, J. B. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 19, 110–124 (2018).

    CAS  PubMed  Google Scholar 

  • Orlando, L., Gilbert, M. T. P. & Willerslev, E. Reconstructing ancient genomes and epigenomes. Nat. Rev. Genet. 16, 395–408 (2015).

    CAS  PubMed  Google Scholar 

  • Skoglund, P. & Mathieson, I. Ancient genomics of modern humans: the first decade. Annu. Rev. Genomics Hum. Genet. 19, 381–404 (2018).

    CAS  PubMed  Google Scholar 

  • Ramamoorthy, A., Yee, S. W. & Karnes, J. Unveiling the genetic architecture of human disease for precision medicine. Clin. Transl. Sci. 12, 3–5 (2019).

    PubMed  Google Scholar 

  • Stearns, S. C. & Medzhitov, R. Evolutionary Medicine (Sinauer Associates, 2016). This foundational textbook provides an introduction to the field of evolutionary medicine.

  • Carroll, S. P. et al. Applying evolutionary biology to address global challenges. Science 346, 1245993 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Young, M. J. & Copeland, W. C. Human mitochondrial DNA replication machinery and disease. Curr. Opin. Genet. Dev. 38, 52–62 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz, S. & Méndez, J. DNA replication stress: from molecular mechanisms to human disease. Chromosoma 126, 1–15 (2017).

    PubMed  Google Scholar 

  • Ackermann, M., Chao, L., Bergstrom, C. T. & Doebeli, M. On the evolutionary origin of aging. Aging Cell 6, 235–244 (2007).

    CAS  PubMed  Google Scholar 

  • Flatt, T. & Partridge, L. Horizons in the evolution of aging. BMC Biol. 16, 93 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Rokas, A. The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu. Rev. Genet. 42, 235–251 (2008).

    CAS  PubMed  Google Scholar 

  • Albuquerque, T. A. F., Drummond do Val, L., Doherty, A. & de Magalhães, J. P. From humans to hydra: patterns of cancer across the tree of life. Biol. Rev. 93, 1715–1734 (2018).

    PubMed  Google Scholar 

  • Crespi, B. & Summers, K. Evolutionary biology of cancer. Trends Ecol. Evol. 20, 545–552 (2005).

    PubMed  Google Scholar 

  • Kinzler, K. W. & Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386, 761 (1997).

    CAS  PubMed  Google Scholar 

  • Michor, F., Iwasa, Y. & Nowak, M. A. Dynamics of cancer progression. Nat. Rev. Cancer 4, 197–205 (2004).

    CAS  PubMed  Google Scholar 

  • Domazet-Lošo, T. & Tautz, D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol. 8, 66 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Thomas, F. et al. Applying ecological and evolutionary theory to cancer: a long and winding road. Evol. Appl. 6, 1–10 (2013).

    PubMed  Google Scholar 

  • Vogelstein, B. et al. Cancer genome landscapes. Science 340, 1546–1558 (2013).

    Google Scholar 

  • Aktipis, C. A. & Nesse, R. M. Evolutionary foundations for cancer biology. Evol. Appl. 6, 144–159 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Gerlinger, M. et al. Cancer: evolution within a lifetime. Annu. Rev. Genet. 48, 215–236 (2014).

    CAS  PubMed  Google Scholar 

  • Enriquez-Navas, P. M., Wojtkowiak, J. W. & Gatenby, R. A. Application of evolutionary principles to cancer therapy. Cancer Res. 75, 4675–4680 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020). This study analyses the evolution of somatic mutational processes and reconstructs the life history of 38 different types of cancer based on whole-genome sequences from 2,658 tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hibino, T. et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev. Biol. 300, 349–365 (2006).

    CAS  PubMed  Google Scholar 

  • Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    CAS  PubMed  Google Scholar 

  • Flajnik, M. F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet. 11, 47–59 (2010).

    CAS  PubMed  Google Scholar 

  • Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science. 351, 1083–1087 (2016). This study provides an example of the co-option of ancient genomic elements (endogenous retroviruses) to create new regulatory elements in mammalian immune systems.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunne, D. W. & Cooke, A. A worm’s eye view of the immune system: consequences for evolution of human autoimmune disease. Nat. Rev. Immunol. 5, 420–426 (2005).

    CAS  PubMed  Google Scholar 

  • Shubin, N., Tabin, C. & Carroll, S. Deep homology and the origins of evolutionary novelty. Nature 457, 818–823 (2009).

    CAS  PubMed  Google Scholar 

  • Shubin, N. Your Inner Fish: A Journey into the 3.5-billion-year History of the Human Body (Knopf Doubleday, 2008).

  • Guernsey, M. W., Chuong, E. B., Cornelis, G., Renfree, M. B. & Baker, J. C. Molecular conservation of marsupial and eutherian placentation and lactation. eLife 6, e27450 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Abbot, P. & Capra, J. A. What is a placental mammal anyway?: many developmental functions in marsupials and eutherian mammals are accomplished by different tissues, but similar genes. eLife 6, e30994 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Katz, P. S. ‘Model organisms’ in the light of evolution. Curr. Biol. 26, R649–R650 (2016).

    CAS  PubMed  Google Scholar 

  • Bolker, J. A. Selection of models: evolution and the choice of species for translational research. Brain Behav. Evol. 93, 82–91 (2019). This review provides guidelines for considering evolutionary context in the selection of model organisms for translational research.

    PubMed  Google Scholar 

  • Bart van der Worp, H. et al. Can animal models of disease reliably inform human studies? PLoS Med. 7, 1–8 (2010).

    Google Scholar 

  • Mak, I. W. Y., Evaniew, N. & Ghert, M. Lost in translation: animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 6, 114–118 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Caulin, A. F. & Maley, C. C. Peto’s paradox: evolution’s prescription for cancer prevention. Trends Ecol. Evol. 26, 175–182 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Tollis, M. et al. Return to the sea, get huge, beat cancer: an analysis of cetacean genomes including an assembly for the humpback whale (Megaptera novaeangliae). Mol. Biol. Evol. 36, 1746–1763 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sulak, M. et al. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife 5, e11994 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Vazquez, J. M., Sulak, M., Chigurupati, S. & Lynch, V. J. A zombie LIF gene in elephants is upregulated by TP53 to induce apoptosis in response to DNA damage. Cell Rep. 24, 1765–1776 (2018). This study finds a molecular explanation for Peto’s paradox — why do elephants not have high cancer rates given their large number of cells? — in the refunctionalization of LIF6, a pseudogene with pro-apoptotic functions.

    CAS  PubMed  Google Scholar 

  • O’Bleness, M., Searles, V. B., Varki, A., Gagneux, P. & Sikela, J. M. Evolution of genetic and genomic features unique to the human lineage. Nat. Rev. Genet. 13, 853–866 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Patterson, N., Richter, D. J., Gnerre, S., Lander, E. S. & Reich, D. Genetic evidence for complex speciation of humans and chimpanzees. Nature 441, 1103–1108 (2006).

    CAS  PubMed  Google Scholar 

  • Crespi, B. J. & Go, M. C. Diametrical diseases reflect evolutionary-genetic tradeoffs: evidence from psychiatry, neurology, rheumatology, oncology and immunology. Evol. Med. Public Health 2015, 216–253 (2015). This article describes the broad imprint of genetic trade-offs on diverse human diseases.

    PubMed  PubMed Central  Google Scholar 

  • Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259 (1989).

    Google Scholar 

  • Ricklefs, R. E. & Wikelski, M. The physiology/life-history nexus. Trends Ecol. Evol. 17, 462–468 (2002).

    Google Scholar 

  • Zera, A. J. & Harshman, L. G. The physiology of life history trade-offs in animals. Annu. Rev. Ecol. Syst. 32, 95–126 (2001).

    Google Scholar 

  • Brady, S. P. et al. Understanding maladaptation by uniting ecological and evolutionary perspectives. Am. Nat. 194, 495–515 (2019).

    PubMed  Google Scholar 

  • Ellison, P. T. Evolutionary tradeoffs. Evol. Med. Public Health 2014, 93 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Al-Nbaheen, M. et al. Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev. Rep. 9, 32–43 (2013).

    CAS  PubMed  Google Scholar 

  • Jacqueline, C. et al. Cancer: a disease at the crossroads of trade-offs. Evol. Appl. 10, 215–225 (2017).

    PubMed  Google Scholar 

  • Marques-Bonet, T. & Eichler, E. E. The evolution of human segmental duplications and the core duplicon hypothesis. Cold Spring Harb. Symposia Quant. Biol. 74, 355–362 (2009).

    CAS  PubMed  Google Scholar 

  • Dennis, M. Y. & Eichler, E. E. Human adaptation and evolution by segmental duplication. Curr. Opin. Genet. Dev. 41, 44–52 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiddes, I. T. et al. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 173, 1356–1369.e22 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, I. K. et al. Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation. Cell 173, 1370–1384.e16 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrier, S. et al. The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell 138, 990–1004 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis, M. Y. et al. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149, 912–922 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Florio, M. et al. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347, 1465–1470 (2015).

    CAS  PubMed  Google Scholar 

  • Antonacci, F. et al. Palindromic GOLGA8 core duplicons promote chromosome 15q13.3 microdeletion and evolutionary instability. Nat. Genet. 46, 1293–1302 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sikela, J. M. & Searles Quick, V. B. Genomic trade-offs: are autism and schizophrenia the steep price of the human brain? Hum. Genet. 137, 1–13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan, S. et al. Genetic markers of human evolution are enriched in schizophrenia. Biol. Psychiatry 80, 284–292 (2016).

    CAS  PubMed  Google Scholar 

  • Polimanti, R. & Gelernter, J. Widespread signatures of positive selection in common risk alleles associated to autism spectrum disorder. PLoS Genet. 13, 1–14 (2017).

    Google Scholar 

  • Xu, K., Schadt, E. E., Pollard, K. S., Roussos, P. & Dudley, J. T. Genomic and network patterns of schizophrenia genetic variation in human evolutionary accelerated regions. Mol. Biol. Evol. 32, 1148–1160 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doan, R. N. et al. Mutations in human accelerated regions disrupt cognition and social behavior. Cell 167, 341–354.e12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp, P. M. & Hahn, B. H. The evolution of HIV-1 and the origin of AIDS. Phil. Trans. R. Soc. B 365, 2487–2494 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, D. H., Hurtado-Ziola, N., Gagneux, P. & Varki, A. Loss of Siglec expression on T lymphocytes during human evolution. Proc. Natl Acad. Sci. USA 103, 7765–7770 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soto, P. C., Karris, M. Y., Spina, C. A., Richman, D. D. & Varki, A. Cell-intrinsic mechanism involving Siglec-5 associated with divergent outcomes of HIV-1 infection in human and chimpanzee CD4 T cells. J. Mol. Med. 91, 261–270 (2013).

    CAS  PubMed  Google Scholar 

  • Arora, G., Polavarapu, N. & McDonald, J. F. Did natural selection for increased cognitive ability in humans lead to an elevated risk of cancer? Med. Hypotheses 73, 453–456 (2009).

    PubMed  Google Scholar 

  • Varki, N. M. & Varki, A. On the apparent rarity of epithelial cancers in captive chimpanzees. Phil. Trans. R. Soc. B 370, 20140225 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Varki, A. Loss of N-glycolylneuraminic acid in humans: mechanisms, consequences, and implications for hominid evolution. Yearb. Phys. Anthropol. 44, 54–69 (2001).

    Google Scholar 

  • Chou, H. H. et al. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo–Pan divergence. Proc. Natl Acad. Sci. USA 95, 11751–11756 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irie, A., Koyamat, S., Kozutsumi, Y., Kawasaki, T. & Suzuki, A. The molecular basis for the absence of N-glycolylneuraminic acid in humans. J. Biol. Chem. 273, 15866–15871 (1998).

    CAS  PubMed  Google Scholar 

  • Martin, M. J., Rayner, J. C., Gagneux, P., Barnwell, J. W. & Varki, A. Evolution of human–chimpanzee differences in malaria susceptibility: relationship to human genetic loss of N-glycolylneuraminic acid. Proc. Natl Acad. Sci. USA 102, 12819–12824 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varki, A. & Gagneux, P. Human-specific evolution of sialic acid targets: explaining the malignant malaria mystery? Proc. Natl Acad. Sci. USA 106, 14739–14740 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, L. et al. Host adaptation of a bacterial toxin from the human pathogen Salmonella typhi. Cell 159, 1290–1299 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varki, A. Uniquely human evolution of sialic acid genetics and biology. Proc. Natl Acad. Sci. USA 107, 8939–8946 (2010). This article demonstrates that genes involved in sialic acid biology are a ‘hot spot’ of genetic and physiological changes during recent evolution with implications for human-specific disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quach, H. & Quintana-Murci, L. Living in an adaptive world: genomic dissection of the genus Homo and its immune response. J. Exp. Med. 214, 877–894 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana-Murci, L. Human immunology through the lens of evolutionary genetics. Cell 177, 184–199 (2019).

    CAS  PubMed  Google Scholar 

  • Seluanov, A., Gladyshev, V. N., Vijg, J. & Gorbunova, V. Mechanisms of cancer resistance in long-lived mammals. Nat. Rev. Cancer 18, 433–441 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coppola, L. et al. Biobanking in health care: evolution and future directions. J. Transl. Med. 17, 172 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Bowton, E. et al. Biobanks and electronic medical records: enabling cost-effective research. Sci. Transl. Med. 6, 234cm3 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Bush, W. S., Oetjens, M. T. & Crawford, D. C. Unravelling the human genome–phenome relationship using phenome-wide association studies. Nat. Rev. Genet. 17, 129–145 (2016).

    CAS  PubMed  Google Scholar 

  • van Manen, D. et al. Genome-wide association scan in HIV-1-infected individuals identifying variants influencing disease course. PLoS ONE 6, e22208 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Sáez-Cirión, A. & Pancino, G. HIV controllers: a genetically determined or inducible phenotype? Immunol. Rev. 254, 281–294 (2013).

    PubMed  Google Scholar 

  • McLaren, P. J. et al. Polymorphisms of large effect explain the majority of the host genetic contribution to variation of HIV-1 virus load. Proc. Natl Acad. Sci. USA 112, 14658–14663 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parham, P. & Ohta, T. Population biology of antigen presentation by MHC class I molecules. Science 272, 67–74 (1996).

    CAS  PubMed  Google Scholar 

  • Klepiela, P. et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432, 769–774 (2004).

    Google Scholar 

  • Martin, M. P. et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat. Genet. 39, 733–740 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Groot, N. G. et al. AIDS-protective HLA-B*27/B*57 and chimpanzee MHC class I molecules target analogous conserved areas of HIV-1/SIVcpz. Proc. Natl Acad. Sci. USA 107, 15175–15180 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Fan, S., Hansen, M. E. B., Lo, Y. & Tishkoff, S. A. Going global by adapting local: a review of recent human adaptation. Science 354, 54–59 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marciniak, S. & Perry, G. H. Harnessing ancient genomes to study the history of human adaptation. Nat. Rev. Genet. 18, 659–674 (2017).

    CAS  PubMed  Google Scholar 

  • Nielsen, R. et al. Tracing the peopling of the world through genomics. Nature 541, 302–310 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo, L., Serrano, C., Amorim, A. & Cooper, D. N. Trans-species polymorphism in humans and the great apes is generally maintained by balancing selection that modulates the host immune response. Hum. Genomics 9, 21 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Gravel, S. When is selection effective? Genetics 203, 451–462 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).

    PubMed  Google Scholar 

  • Vernot, B. & Akey, J. M. Resurrecting surviving Neandertal linages from modern human genomes. Science 343, 1017–1021 (2014).

    CAS  PubMed  Google Scholar 

  • Chen, L., Wolf, A. B., Fu, W., Li, L. & Akey, J. M. Identifying and interpreting apparent Neanderthal ancestry in African individuals. Cell 180, 677–687.e16 (2020).

    CAS  PubMed  Google Scholar 

  • Hammer, M. F., Woerner, A. E., Mendez, F. L., Watkins, J. C. & Wall, J. D. Genetic evidence for archaic admixture in Africa. Proc. Natl Acad. Sci. USA 108, 15123–15128 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh, P. H. et al. Model-based analyses of whole-genome data reveal a complex evolutionary history involving archaic introgression in Central African Pygmies. Genome Res. 26, 291–300 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lachance, J. et al. Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers. Cell 150, 457–469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keinan, A. & Clark, A. G. Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336, 740–743 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, W. & Akey, J. M. Selection and adaptation in the human genome. Annu. Rev. Genom. Hum. Genet. 14, 467–489 (2013).

    CAS  Google Scholar 

  • Uricchio, L. H., Zaitlen, N. A., Ye, C. J., Witte, J. S. & Hernandez, R. D. Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants. Genome Res. 26, 863–873 (2016). This study demonstrates how the recent demographic and selective history of human populations poses challenges for the identification and interpretation of genetic variants that cause disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Do, R. et al. No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. Nat. Genet. 47, 126–131 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simons, Y. B., Turchin, M. C., Pritchard, J. K. & Sella, G. The deleterious mutation load is insensitive to recent population history. Nat. Genet. 46, 220–224 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simons, Y. B. & Sella, G. The impact of recent population history on the deleterious mutation load in humans and close evolutionary relatives. Curr. Opin. Genet. Dev. 41, 150–158 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sella, G. & Barton, N. H. Thinking about the evolution of complex traits in the era of genome-wide association studies. Annu. Rev. Genomics Hum. Genet. 20, 461–493 (2019).

    CAS  PubMed  Google Scholar 

  • Kim, M. S., Patel, K. P., Teng, A. K., Berens, A. J. & Lachance, J. Genetic disease risks can be misestimated across global populations. Genome Biol. 19, 179 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Rees, J. S., Castellano, S. & Andrés, A. M. The genomics of human local adaptation. Trends Genet. 36, 415–428 (2020).

    CAS  PubMed  Google Scholar 

  • Huerta-Sanchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Rienzo, A. & Hudson, R. R. An evolutionary framework for common diseases: the ancestral-susceptibility model. Trends Genet. 21, 596–601 (2005).

    PubMed  Google Scholar 

  • Manus, M. B. Evolutionary mismatch. Evol. Med. Public Health 2018, 190–191 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Gibson, G. Decanalization and the origin of complex disease. Nat. Rev. Genet. 10, 134–140 (2009).

    CAS  PubMed  Google Scholar 

  • Lachance, J. Disease-associated alleles in genome-wide association studies are enriched for derived low frequency alleles relative to HapMap and neutral expectations. BMC Med. Genomics 3, 57 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77, 171–192 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minster, R. L. et al. A thrifty variant in CREBRF strongly influences body mass index in Samoans. Nat. Genet. 48, 1049–1054 (2016). This paper argues that bottlenecks and extreme past environments created a ‘thrifty’ gene variant in Samoans that is metabolically beneficial in times of starvation, but may contribute to obesity risk in modern environments.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nédélec, Y. et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell 167, 657–669.e21 (2016). This work shows that the human inflammatory response differs based on the different evolutionary histories (including local adaptations and archaic introgression) of human populations.

    PubMed  Google Scholar 

  • Raj, T. et al. Common risk alleles for inflammatory diseases are targets of recent positive selection. Am. J. Hum. Genet. 92, 517–529 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barber, M. F., Lee, E. M., Griffin, H. & Elde, N. C. Rapid evolution of primate type 2 immune response factors linked to asthma susceptibility. Genome Biol. Evol. 9, 1757–1765 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smallwood, T. B. et al. Helminth immunomodulation in autoimmune disease. Front. Immunol. 8, 453 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Sobotková, K. et al. Helminth therapy—from the parasite perspective. Trends Parasitol. 35, 501–515 (2019).

    PubMed  Google Scholar 

  • Harris, K. & Nielsen, R. The genetic cost of neanderthal introgression. Genetics 203, 881–891 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juric, I., Aeschbacher, S. & Coop, G. The strength of selection against Neanderthal introgression. PLoS Genet. 12, 1–25 (2016).

    Google Scholar 

  • Dannemann, M., Andrés, A. M. & Kelso, J. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human Toll-like receptors. Am. J. Hum. Genet. 98, 22–33 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simonti, C. N. The phenotype legacy of admixture between modern humans and Neandertals. Science 351, 737–742 (2016). This paper uses a large biobank cohort to demonstrate that admixture between Neanderthals and the ancestors of modern Eurasians influences disease risk.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quach, H. et al. Genetic adaptation and neandertal admixture shaped the immune system of human populations. Cell 167, 643–656.e17 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dannemann, M. & Kelso, J. The contribution of neanderthals to phenotypic variation in modern humans. Am. J. Hum. Genet. 101, 578–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507, 354–357 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sankararaman, S., Mallick, S., Patterson, N. & Reich, D. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr. Biol. 26, 1241–1247 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCoy, R. C., Wakefield, J. & Akey, J. M. Impacts of Neanderthal-introgressed sequences on the landscape of human gene expression. Cell 168, 916–927.e12 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • McArthur, E., Rinker, D. C. & Capra, J. A. Quantifying the contribution of Neanderthal introgression to the heritability of complex traits. Preprint at bioRxiv //doi.org/10.1101/2020.06.08.140087 (2020).

    Article  Google Scholar 

  • Skov, L. et al. The nature of Neanderthal introgression revealed by 27,566 Icelandic genomes. Nature 582, 78–83 (2020).

    CAS  PubMed  Google Scholar 

  • Rinker, D. C. et al. Neanderthal introgression reintroduced functional ancestral alleles lost in Eurasian populations. Nat. Ecol. Evol. 4, 1332–1341 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Racimo, F., Marnetto, D. & Huerta-Sánchez, E. Signatures of archaic adaptive introgression in present-day human populations. Mol. Biol. Evol. 34, 296–317 (2017).

    CAS  PubMed  Google Scholar 

  • Bigham, A. W. & Lee, F. S. Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev. 28, 2189–2204 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Deschamps, M. et al. Genomic signatures of selective pressures and introgression from Archaic hominins at human innate immunity genes. Am. J. Hum. Genet. 98, 5–21 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enard, D. & Petrov, D. A. Evidence that RNA viruses drove adaptive introgression between Neanderthals and modern humans. Cell 175, 360–371.e13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gittelman, R. M. et al. Archaic hominin admixture facilitated adaptation to out-of-Africa environments. Curr. Biol. 26, 3375–3382 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeberg, H. & Pääbo, S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 587, 610–612 (2020).

    PubMed  Google Scholar 

  • Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018). This study develops PRSs for five common diseases and argues that these scores could stratify patients into clinically meaningful risk groups.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly, D. E., Hansen, M. E. B. & Tishkoff, S. A. Global variation in gene expression and the value of diverse sampling. Curr. Opin. Syst. Biol. 1, 102–108 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Hindorff, L. A. et al. Prioritizing diversity in human genomics research. Nat. Rev. Genet. 19, 175–185 (2018).

    CAS  PubMed  Google Scholar 

  • Quansah, E. & McGregor, N. W. Towards diversity in genomics: the emergence of neurogenomics in Africa? Genomics 110, 1–9 (2018).

    CAS  PubMed  Google Scholar 

  • Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an ancestry group. eLife 9, e48376 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

    CAS  PubMed  Google Scholar 

  • Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017). This study demonstrates that PRSs for eight phenotypes using existing GWAS summary statistics are inconsistent for populations that are genetically distant from the original GWAS population.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrovski, S. & Goldstein, D. B. Unequal representation of genetic variation across ancestry groups creates healthcare inequality in the application of precision medicine. Genome Biol. 17, 157 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Kessler, M. D. et al. Challenges and disparities in the application of personalized genomic medicine to populations with African ancestry. Nat. Commun. 7, 12521 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maisano Delser, P. & Fuselli, S. Human loci involved in drug biotransformation: worldwide genetic variation, population structure, and pharmacogenetic implications. Hum. Genet. 132, 563–577 (2013).

    CAS  PubMed  Google Scholar 

  • Madian, A. G., Wheeler, H. E., Jones, R. B. & Dolan, M. E. Relating human genetic variation to variation in drug responses. Trends Genet. 28, 487–495 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huo, D. et al. Comparison of breast cancer molecular features and survival by African and European ancestry in The Cancer Genome Atlas. JAMA Oncol. 3, 1654–1662 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Carlson, C. S. et al. Generalization and dilution of association results from European GWAS in populations of non-European ancestry: the PAGE study. PLoS Biol. 11, e1001661 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manrai, A. K. et al. Genetic misdiagnoses and the potential for health disparities. N. Engl. J. Med. 375, 655–665 (2016). This article demonstrates the misclassification of ‘causal’ hypertrophic cardiomyopathy variants in diverse individuals based on the lack of diversity in existing genetic databases.

    PubMed  PubMed Central  Google Scholar 

  • Lynch, M. Mutation and human exceptionalism: our future genetic load. Genetics 202, 869–875 (2016). This article explores the implications of the recent removal of many selective pressures from the natural environment on the human genome, risk for disease and precision medicine.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lachance, J. et al. Genetic hitchhiking and population bottlenecks contribute to prostate cancer disparities in men of African descent. Cancer Res. 78, 2432–2443 (2018). This analysis shows that haplotypes with protective effects against prostate cancer may have risen to higher frequency in non-African populations because of selection on the nearby variants associated with skin pigmentation.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Márquez-Luna, C. et al. Multiethnic polygenic risk scores improve risk prediction in diverse populations. Genet. Epidemiol. 41, 811–823 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Shi, H. et al. Localizing components of shared transethnic genetic architecture of complex traits from GWAS summary data. Am. J. Hum. Genet. 106, 805–817 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford, N. G. et al. Loci associated with skin pigmentation identified in African populations. Science. 358, eaan8433 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Fumagalli, M. et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science 349, 1343–1347 (2015).

    CAS  PubMed  Google Scholar 

  • Asgari, S. et al. A positively selected FBN1 missense variant reduces height in Peruvian individuals. Nature 582, 234–239 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y. R. & Keating, B. J. Trans-ethnic genome-wide association studies: advantages and challenges of mapping in diverse populations. Genome Med. 6, 1–14 (2014).

    CAS  Google Scholar 

  • Cook, J. P. & Morris, A. P. Multi-ethnic genome-wide association study identifies novel locus for type 2 diabetes susceptibility. Eur. J. Hum. Genet. 24, 1175–1180 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Fernández-Rhodes, L. et al. Trans-ethnic fine-mapping of genetic loci for body mass index in the diverse ancestral populations of the Population Architecture using Genomics and Epidemiology (PAGE) study reveals evidence for multiple signals at established loci. Hum. Genet. 136, 771–800 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Hiby, S. E. et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J. Exp. Med. 200, 957–965 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat. Genet. 47, 1114–1120 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corbett, S., Courtiol, A., Lummaa, V., Moorad, J. & Stearns, S. The transition to modernity and chronic disease: mismatch and natural selection. Nat. Rev. Genet. 19, 419–430 (2018).

    CAS  PubMed  Google Scholar 

  • Rodríguez, J. A. et al. Antagonistic pleiotropy and mutation accumulation influence human senescence and disease. Nat. Ecol. Evol. 1, 1–5 (2017).

    Google Scholar 

  • Byars, S. G. et al. Genetic loci associated with coronary artery disease harbor evidence of selection and antagonistic pleiotropy. PLoS Genet. 13, e1006328 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Gluckman, P. D. & Hanson, M. A. Changing times: the evolution of puberty. Mol. Cell. Endocrinol. 254–255, 26–31 (2006).

    PubMed  Google Scholar 

  • Arnold, A. J. & Fristrup, K. The theory of evolution by natural selection: a hierarchical expansion. Paleobiology 8, 113–129 (1982).

    Google Scholar 

  • Futuyma, D. J. Evolutionary constraint and ecological consequences. Evolution 64, 1865–1884 (2010).

    PubMed  Google Scholar 

  • Gluckman, P. & Hanson, M. Developmental Origins of Health and Disease (Cambridge Univ. Press, 2006).

  • Barreiro, L. B. & Quintana-Murci, L. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat. Rev. Genet. 11, 17–30 (2010).

    CAS  PubMed  Google Scholar 

  • Fay, J. C. Disease consequences of human adaptation. Appl. Transl. Genomics 2, 42–47 (2013).

    CAS  Google Scholar 

  • Frank, S. A. & Crespi, B. J. Pathology from evolutionary conflict, with a theory of X chromosome versus autosome conflict over sexually antagonistic traits. Proc. Natl Acad. Sci. USA 108, 10886–10893 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abbot, P. & Rokas, A. Mammalian pregnancy. Curr. Biol. 27, R127–R128 (2017).

    CAS  PubMed  Google Scholar 

  • Aungst, H. et al. in Power, M. & Schulkin J. in Integrating Evolutionary Biology into Medical Education: For Maternal and Child Healthcare Students, Clinicians, and Scientists Ch. 5 (eds Schulkin, J. & and Power, M.) 91–118 (Oxford Univ. Press, 2019).

  • Redman, C. W. G. & Sargent, I. L. Immunology of pre-eclampsia. Am. J. Reprod. Immunol. 63, 534–543 (2010).

    CAS  PubMed  Google Scholar 

  • Than, N. G. et al. Integrated systems biology approach identifies novel maternal and placental pathways of preeclampsia. Front. Immunol. 9, 1661 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Bergmann, A. et al. Reduction of circulating soluble Flt-1 alleviates preeclampsia-like symptoms in a mouse model. J. Cell. Mol. Med. 14, 1857–1867 (2010).

    CAS  PubMed  Google Scholar 

  • Turanov, A. A. et al. RNAi modulation of placental sFLT1 for the treatment of preeclampsia. Nat. Biotechnol. 36, 1164–1173 (2018).

    CAS  Google Scholar 

  • Robertson, S. A. Preventing preeclampsia by silencing soluble Flt-1? N. Engl. J. Med. 380, 1080–1082 (2019).

    PubMed  Google Scholar 

  • Moorjani, P., Amorim, C. E. G., Arndt, P. F. & Przeworski, M. Variation in the molecular clock of primates. Proc. Natl Acad. Sci. USA 113, 10607–10612 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marinić, M. & Lynch, V. J. Relaxed constraint and functional divergence of the progesterone receptor (PGR) in the human stem-lineage. PLoS Genet. 16, e1008666 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Zeberg, H., Kelso, J. & Pääbo, S. The Neandertal progesterone receptor. Mol. Biol. Evol. 37, 2655–2660 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, A. G. et al. Positive selection in the human genome inferred from human–chimp–mouse orthologous gene alignments. Cold Spring Harb. Symp. Quant. Biol. 68, 479–486 (2003).

    Google Scholar 

  • Chen, C. et al. The human progesterone receptor shows evidence of adaptive evolution associated with its ability to act as a transcription factor. Mol. Phylogenet. Evol. 47, 637–649 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • LaBella, A. L. et al. Accounting for diverse evolutionary forces reveals mosaic patterns of selection on human preterm birth loci. Nat. Commun. 11, 3731 (2020). This article demonstrates that a mosaic of diverse selective pressures has shaped the genetic loci that influence risk for preterm birth, a common complex disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, A., Morales-Prieto, D. M., Pastuschek, J., Fröhlich, K. & Markert, U. R. Only humans have human placentas: molecular differences between mice and humans. J. Reprod. Immunol. 108, 65–71 (2015).

    CAS  PubMed  Google Scholar 

  • Hammer, A. Immunological regulation of trophoblast invasion. J. Reprod. Immunol. 90, 21–28 (2011).

    CAS  PubMed  Google Scholar 

  • Erlebacher, A. Immunology of the maternal–fetal interface. Annu. Rev. Immunol. 31, 387–411 (2013).

    CAS  PubMed  Google Scholar 

  • Robinson, D. P. & Klein, S. L. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Hormones Behav. 62, 263–271 (2012).

    CAS  Google Scholar 

  • Kourtis, A. P., Read, J. S. & Jamieson, D. J. Pregnancy and infection. N. Engl. J. Med. 370, 2211–2218 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Hiby, S. E. et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J. Clin. Invest. 120, 4102–4110 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moffett, A., Chazara, O., Colucci, F. & Johnson, M. H. Variation of maternal KIR and fetal HLA-C genes in reproductive failure: too early for clinical intervention. Reprod. Biomed. Online 33, 763–769 (2016).

    CAS  PubMed  Google Scholar 

  • Moon, J. M., Capra, J. A., Abbot, P. & Rokas, A. Immune regulation in eutherian pregnancy: live birth coevolved with novel immune genes and gene regulation. BioEssays 41, 1900072 (2019).

    Google Scholar 

  • Muehlenbachs, A., Fried, M., Lachowitzer, J., Mutabingwa, T. K. & Duffy, P. E. Natural selection of FLT1 alleles and their association with malaria resistance in utero. Proc. Natl Acad. Sci. USA 105, 14488–14491 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson, D. I. et al. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol. Rev. 44, 171–188 (2020).

    CAS  PubMed  Google Scholar 

  • Enriquez-Navas, P. M. et al. Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci. Transl. Med. 8, 327ra24 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Gatenby, R. A. & Brown, J. S. Integrating evolutionary dynamics into cancer therapy. Nat. Rev. Clin. Oncol. 17, 675–686 (2020).

    PubMed  Google Scholar 

  • Fairlamb, A. H., Gow, N. A. R., Matthews, K. R. & Waters, A. P. Drug resistance in eukaryotic microorganisms. Nat. Microbiol. 1, 16092 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, R., Chen, Y., Ritchie, M. D. & Moore, J. H. Electronic health records and polygenic risk scores for predicting disease risk. Nat. Rev. Genet. 21, 493–502 (2020).

    CAS  PubMed  Google Scholar 

  • Duncan, L. et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun. 10, 3328 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Why is understanding evolutionary biology important to the future of medicine?

    Understanding how natural selection and other evolutionary processes have shaped the body and its components across evolutionary time is equally valuable. Like developmental biology, it describes patterns of development that explain why the body is the way it is and why certain aspects leave us vulnerable to diseases.

    Why is evolution important in the medical field?

    Like all biological systems, both disease-causing organisms and their victims evolve. Understanding evolution can make a big difference in how we treat disease. The evolution of disease-causing organisms may outpace our ability to invent new treatments, but studying the evolution of drug resistance can help us slow it.

    Why is evolutionary biology important?

    Understanding evolution helps us solve biological problems that impact our lives. There are excellent examples of this in the field of medicine. To stay one step ahead of pathogenic diseases, researchers must understand the evolutionary patterns of disease-causing organisms.

    What is evolutionary perspective on health and medicine?

    An evolutionary view suggests that many genetic variants interact with environments and other genes during development to influence disease phenotypes. Far from suggesting quick new cures, these four general messages help to explain why disease is so prevalent and difficult to prevent.

    Toplist

    Neuester Beitrag

    Stichworte