When performing the ophthalmoscopic examination, which finding of the blood vessels is abnormal?

The eye can be examined with routine equipment, including a standard ophthalmoscope; thorough examination requires special equipment and evaluation by an ophthalmologist.

The first step in an ophthalmologic evaluation is to record visual acuity. Many patients do not give a full effort. Providing adequate time and coaxing patients tend to yield more accurate results. Visual acuity is measured with and without the patient's own glasses. If patients do not have their glasses, a pinhole refractor is used. If a commercial pinhole refractor is unavailable, one can be made at the bedside by poking holes through a piece of cardboard using an 18-gauge needle and varying the diameter of each hole slightly. Patients choose the hole that corrects vision the most. If acuity corrects with pinhole refraction, the problem is a refractive error Overview of Refractive Error In the emmetropic (normally refracted) eye, entering light rays are focused on the retina by the cornea and the lens, creating a sharp image that is transmitted to the brain. The lens is elastic... read more . Pinhole refraction is a rapid, efficient way to diagnose refractive errors, which are the most common cause of blurred vision. However, with pinhole refraction, best correction is usually to only about 20/30, not 20/20.

Visual acuity in each eye is tested as the opposite eye is covered with a solid object (not the patient's fingers, which may separate during testing). Patients look at an eye chart 20 ft (6 m) away. If this test cannot be done, acuity can be measured by using a chart held about 36 cm (14 in) from the eye. Normal and abnormal vision is quantified by Snellen notation. A Snellen notation of 20/40 (6/12) indicates that the smallest letter that can be read by someone with normal vision at 40 ft (12 m) has to be brought to 20 ft (6 m) before it is recognized by the patient. Vision is recorded as the smallest line in which the patient can read half of the letters, even if the patient feels that the letters are blurry or they have to guess. If the patient cannot read the top line of the Snellen chart at 20 ft (6 m), acuity is tested at 10 ft (3 m). If nothing can be read from a chart even at the closest distance, the examiner holds up different numbers of fingers to see whether the patient can accurately count them. If not, the examiner tests whether the patient can perceive hand motion. If not, a light is shined into the eye to see whether light is perceived.

Near vision is checked by asking patients to read a standard near card or newsprint at 14 in (36 cm); patients > 40 years who require corrective lenses (reading glasses) should wear them during near vision testing.

Refractive error can be estimated roughly with a handheld ophthalmoscope by noting the lens necessary for the examiner to focus on the retina; this procedure requires examiners to use their own corrective lenses and is never a substitute for a comprehensive assessment of refraction. More commonly, refractive error is measured with a standard phoropter or an automated refractor (a device that measures changes in light projected and reflected by the patient’s eye). These devices also measure astigmatism (see Overview of Refractive Error Overview of Refractive Error ).

Eyelid margins and periocular cutaneous tissues are examined under a focal light and magnification (eg, provided by loupe, slit lamp, or ophthalmoscope). In cases of suspected dacryocystitis or canaliculitis, the lacrimal sacs are palpated and an attempt is made to express any contents through the canaliculi and puncta. After eyelid eversion, the palpebral and bulbar conjunctivae and the fornices can be inspected for foreign bodies, signs of inflammation (eg, follicular hypertrophy, exudate, hyperemia, edema), or other abnormalities.

Indistinct or blurred edges of the corneal light reflex (reflection of light from the cornea when illuminated) suggest the corneal surface is not intact or is roughened, as occurs with a corneal abrasion or keratitis. Fluorescein staining reveals abrasions and ulcers. Before staining, a drop of topical anesthetic (eg, proparacaine 0.5%, tetracaine 0.5%) may be added to facilitate examination if the patient is in pain or if it is necessary to touch the cornea or conjunctiva (eg, to remove a foreign body or measure intraocular pressure). A sterile, individually packaged fluorescein strip is moistened with 1 drop of sterile saline or topical anesthetic and, with the patient’s eye looking upward, is touched momentarily to the inside of the lower eyelid. The patient blinks several times to spread the dye into the tear film, and then the eye is examined under magnification and cobalt blue illumination. Areas where corneal or conjunctival epithelium is absent (abraded or ulcerated) fluoresce green.

The size and shape of the pupils are noted, and pupillary reaction to light is tested in each eye, one at a time, while the patient looks in the distance. Then the swinging flashlight test is done with a penlight to compare direct and consensual pupillary response. There are 3 steps:

  • One pupil is maximally constricted by being exposed to light from the penlight for 1 to 3 seconds.

  • The penlight is rapidly moved to the other eye for 1 to 3 seconds.

  • The light is moved back to the first eye.

Normally, a pupil constricts similarly when light is shined on it (direct response) and when light is shined on the other eye (consensual response). However, if one eye has less light perception than the other, as caused by dysfunction of the afferent limb (from the optic nerve to the optic chiasm) or extensive retinal disease, then the consensual response in the affected eye is stronger than the direct response. Thus, on step 3 of the swinging light test, when the light is shined back on the affected eye, it paradoxically appears to dilate. This finding indicates a relative afferent pupillary defect (RAPD, or Marcus Gunn pupil).

The examiner guides the patient to look in 8 directions (up, up and right, right, down and right, down, down and left, left, left and up) with a moving finger, penlight, or transillumination light, observing for gaze deviation, limitation of movement, disconjugate gaze, or a combination consistent with cranial nerve palsy Overview of Neuro-ophthalmologic and Cranial Nerve Disorders Dysfunction of certain cranial nerves may affect the eye, pupil, optic nerve, or extraocular muscles and their nerves; thus, they can be considered cranial nerve disorders, neuro-ophthalmologic... read more , orbital disease, or other abnormalities that restrict movement.

Pupils can be dilated using 1 drop of tropicamide 1%, phenylephrine 2.5%, or both (repeated in 5 to 10 minutes if necessary); for longer action, a larger dilated pupil, or both, cyclopentolate 1% can be substituted for tropicamide.

Ophthalmoscopy can detect lens or vitreous opacities, assess the optic cup-to-disk ratio, and identify retinal and vascular changes. The optic cup is the central depression, and the optic disk is the entire area of the optic nerve head. The normal ratio of the cup-to-nerve diameters is 0 to 0.4. A ratio of 0.5 may signify loss of ganglion cells and may be a sign of glaucoma.

Retinal changes include

  • Hemorrhage, manifested as small or large areas of blood

Vascular changes include

  • Copper wiring, a sign of arteriosclerosis in which thickened arteriolar walls increase the thickness of the light reflex

  • Silver wiring, a sign of hypertension in which thin, fibrotic arteriolar walls decrease the thickness of the light reflex

  • Loss of venous pulsations, a sign of increased intracranial pressure in patients known to have had pulsations

A slit lamp focuses the height and width of a beam of light for a precise stereoscopic view of the eyelids, conjunctiva, cornea, anterior chamber, iris, lens, and anterior vitreous. With a handheld condensing lens, it can also be used for detailed examination of the retina and macula. It is especially useful for the following:

  • Identifying corneal foreign bodies, abrasions, and other corneal disorders

  • Measuring depth of the anterior chamber

  • Detecting cells (RBCs or WBCs) and flare (evidence of protein) in the anterior chamber

  • Identifying the location and degree of lens opacities (cataracts)

  • Identifying diseases such as macular degeneration Age-Related Macular Degeneration (AMD or ARMD) Age-related macular degeneration (AMD) is the most common cause of irreversible central vision loss in older patients. Dilated funduscopic findings are diagnostic; color photographs, fluorescein... read more

    When performing the ophthalmoscopic examination, which finding of the blood vessels is abnormal?
    , diabetic eye disease Diabetic Retinopathy Manifestations of diabetic retinopathy include microaneurysms, intraretinal hemorrhage, exudates, macular edema, macular ischemia, neovascularization, vitreous hemorrhage, and traction retinal... read more
    When performing the ophthalmoscopic examination, which finding of the blood vessels is abnormal?
    , epiretinal membranes Epiretinal Membrane Epiretinal membrane is formation of a thin, fibrotic membrane over the retina that contracts, wrinkling the underlying retina and interfering with vision. Epiretinal membrane typically occurs... read more , macular edema, and retinal tears (when using a condensing lens)

In direct confrontation, patients maintain a fixed gaze at the examiner’s eye or nose. The examiner brings a small target (eg, a match or a finger) from the patients’ visual periphery into each of the 4 visual quadrants and asks patients to indicate when they first see the object. Slowly wiggling the small target helps patients separate and define it. Another method of direct confrontation visual field testing is to hold a number of fingers in each quadrant and ask patients how many they see. For both methods, each eye is tested separately. Abnormalities in target detection should prompt detailed testing with more precise instruments.

When performing the ophthalmoscopic examination, which finding of the blood vessels is abnormal?

Twelve to 24 Ishihara color plates, which have colored numbers or symbols hidden in a field of colored dots, are commonly used to test color vision. Color-blind patients or patients with acquired color deficiency (eg, in optic nerve diseases) cannot see some or all of the hidden numbers. Most congenital color blindness is red-green; most acquired (eg, caused by glaucoma or optic nerve disease) is blue-yellow.

Tonometry measures intraocular pressure by determining the amount of force needed to indent the cornea. Handheld pen-type tonometers are used for screening. This test requires topical anesthesia (eg, proparacaine 0.5%). Another handheld tonometer, the iCare tonometer, measures rebound time of a small lightweight probe and can be used without topical anesthesia. It is useful in children and is widely used in emergency departments by nonophthalmologists. Office-based screening with noncontact air-puff tonometry also can be used; it requires less training because it makes no direct corneal contact. Goldmann applanation tonometry is the most accurate method but requires more training and typically is used only by ophthalmologists. Measurement of intraocular pressure alone is not adequate screening for glaucoma Overview of Glaucoma Glaucomas are a group of eye disorders characterized by progressive optic nerve damage in which an important part is a relative increase in intraocular pressure (IOP) that can lead to irreversible... read more ; the optic nerve also should be examined.

Fluorescein angiography is used to investigate perfusion, leakage from blood vessels, and neovascularization in conditions such as diabetes, age-related macular degeneration, retinal vascular occlusion, and ocular inflammation. It is also useful in preoperative assessment for retinal laser procedures. After IV injection of fluorescein solution, the retinal, choroidal, optic disk, or iris vasculature is photographed in rapid sequence.

Optical coherence tomography (OCT) provides high-resolution images of posterior eye structures, such as the retina (including retinal pigment epithelium), choroid, posterior vitreous, and optic nerve. Retinal edema can be identified. OCT works in a manner similar to that of ultrasonography but uses light instead of sound; it does not involve contrast use or ionizing radiation and is noninvasive. OCT is useful in imaging retinal disorders that cause macular edema or fibrous proliferation over or underneath the macula, including age-related macular degeneration, diabetic retinopathy Diabetic Retinopathy Manifestations of diabetic retinopathy include microaneurysms, intraretinal hemorrhage, exudates, macular edema, macular ischemia, neovascularization, vitreous hemorrhage, and traction retinal... read more

When performing the ophthalmoscopic examination, which finding of the blood vessels is abnormal?
, macular holes, and epiretinal membranes Epiretinal Membrane Epiretinal membrane is formation of a thin, fibrotic membrane over the retina that contracts, wrinkling the underlying retina and interfering with vision. Epiretinal membrane typically occurs... read more . It is also useful for monitoring progression of glaucoma Overview of Glaucoma Glaucomas are a group of eye disorders characterized by progressive optic nerve damage in which an important part is a relative increase in intraocular pressure (IOP) that can lead to irreversible... read more and other optic nerve abnormalities.

Electrodes are placed on each cornea and on the surrounding skin, and electrical activity in the retina is recorded. This technique evaluates retinal function in patients with retinal degeneration. It does not evaluate vision.

These imaging techniques most often are used for evaluation of ocular trauma, particularly if an intraocular foreign body is suspected, and in the evaluation of orbital tumors, optic neuritis, and optic nerve tumors. MRI should not be done when there is suspicion of a metallic intraocular foreign body.

What eye abnormalities can be observed through an ophthalmoscope?

Abnormal results may be seen on ophthalmoscopy with any of the following conditions:.
Viral inflammation of the retina ( CMV retinitis ).
Diabetes..
Glaucoma..
High blood pressure..
Loss of sharp vision due to age-related macular degeneration..
Melanoma of the eye..
Optic nerve problems..

What structures are examined during an Ophthalmoscopic exam?

Ophthalmoscopy is a test that allows your ophthalmologist, or eye doctor, to look at the back of your eye..
retina..
optic disc..
blood vessels..

When examining the eye with an ophthalmoscope where would the nurse look to visualize the optic disc?

The term temporal is used in describing ophthalmoscopic landmarks and findings, rather than "lateral"; and nasal replaces "medial." The optic nerve head or disk is seen when one looks through the pupil from an angle about 15 degrees temporal to the optical axis (the patient's line of sight, "straight ahead").

Which structures are examined with an ophthalmoscope quizlet?

Which structures are examined with an ophthalmoscope? - Internal structures of the eye. Rationale: The ophthalmoscope illuminates the internal eye structures.