Which cloud architecture feature is supported by distributing workloads across different availability zones?

Level 2

10 words 0 ignored

Ignore words

Check the boxes below to ignore/unignore words, then click save at the bottom. Ignored words will never appear in any learning session.

All None

Ignore?

Ensuring that data is encrypted at rest.

Under the shared responsibility model, which of the following is the customer responsible for?

The use of what AWS feature or service allows companies to track and categorize spending on a detailed level?

Which service stores objects, provides real-time access to those objects, and offers versioning and lifecycle capabilities?

AWS Professional Services

What AWS team assists customers with accelerating cloud adoption through paid engagements in any of several specialty practice areas?

AWS Partner Network Consulting Partners

A customer would like to design and build a new workload on AWS Cloud but does not have the AWS-related software technical expertise in-house. Which of the following AWS programs can a customer take advantage of to achieve that outcome?

Distributing workloads across multiple Availability Zones supports which cloud architecture design principle?

Amazon EC2,Amazon Relational Database Service (Amazon RDS)

Which AWS services can host a Microsoft SQL Server database?

Which of the following inspects AWS environments to find opportunities that can save money for users and also improve system performance?

Which of the following Amazon EC2 pricing models allow customers to use existing server-bound software licenses?

Elasticity,Pay-as-you-go pricing

Which AWS characteristics make AWS cost effective for a workload with dynamic user demand?

Distributing workloads across multiple Availability Zones supports which cloud architecture design principle?

Devops

Related Questions

    500+   more Questions to answer

    Get the App

    Download the Study24x7 App, so you can connect and collaborate.

    Which cloud architecture feature is supported by distributing workloads across different availability zones?

    Which cloud architecture feature is supported by distributing workloads across different availability zones?

    Which cloud architecture feature is supported by distributing workloads across different availability zones?

    Skip to main content

    This browser is no longer supported.

    Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

    Build solutions for high availability using availability zones

    Microsoft Azure global infrastructure is designed and constructed at every layer to deliver the highest levels of redundancy and resiliency to its customers. Azure infrastructure is composed of geographies, regions, and availability zones, which limit the blast radius of a failure and therefore limit potential impact to customer applications and data. The Azure availability zones construct was developed to provide a software and networking solution to protect against datacenter failures and to provide increased high availability (HA) to our customers.

    Availability zones are unique physical locations within an Azure region. Each zone is made up of one or more datacenters with independent power, cooling, and networking. The physical separation of availability zones within a region limits the impact to applications and data from zone failures, such as large-scale flooding, major storms and superstorms, and other events that could disrupt site access, safe passage, extended utilities uptime, and the availability of resources. Availability zones and their associated datacenters are designed such that if one zone is compromised, the services, capacity, and availability are supported by the other availability zones in the region.

    Availability zones can be used to spread a solution across multiple zones within a region, allowing for an application to continue functioning when one zone fails. With availability zones, Azure offers industry best 99.99% Virtual Machine (VM) uptime service-level agreement (SLA). Zone-redundant services replicate your services and data across availability zones to protect from single points of failure. If you are designing highly available solutions on Azure that are mission-critical in nature, in addition to using availability zones, global distribution across multiple Azure regions is highly recommended.

    Which cloud architecture feature is supported by distributing workloads across different availability zones?

    For additional information on availability zones, including service support by region and pricing, see What are availability zones in Azure?.

    Availability zones reference architectures

    The following architectures feature high-availability scenarios:

    • Mission-critical workload built for maximum reliability
    • High availability enterprise deployment using App Services Environment
    • IaaS: Web application with relational database
    • Multi-region load balancing with Traffic Manager and Application Gateway
    • Multi-region web app with private connectivity to database
    • Multi-tier web application built for HA/DR

    Delivering reliability in Azure

    Designing solutions that continue to function in spite of failure is key to improving the reliability of a solution. In cloud-based solutions, building to survive failure is a shared responsibility. This can be viewed at three levels: a resilient foundation, resilient services, and resilient applications. The foundation is the Microsoft investment in the platform, including availability zones. On top of this foundation are the Azure services that customers can enable to support high availability, such as zone-redundant storage (ZRS), which replicates data across zones. The customer builds applications upon the enabled services supported by the foundation. The applications should be architected to support resiliency.


    Your applications

    Your app or workload architecture

    Resilient services

    Azure capabilities you enable as needed

    Resilient foundation

    Azure capabilities built into the platform


    When architecting for resilience, all three layers-foundation, services, and applications-should be considered to achieve the highest level of reliability. Since a solution can be made up of many components, each component should be designed for reliability.

    Zonal vs. zone-redundant architecture

    An Availability Zone in an Azure region is a combination of a fault domain and an update domain. For example, if you create three or more VMs across three zones in an Azure region, your VMs are effectively distributed across three fault domains and three update domains. The Azure platform recognizes this distribution across update domains to take care that VMs in different zones are not updated at the same time.

    Azure services supporting availability zones fall into two categories: zonal and zone redundant. Customer workloads can be categorized to utilize either architecture scenario to meet application performance and durability requirements.

    With zonal architecture, a resource can be deployed to a specific, self-selected Availability Zone to achieve more stringent latency or performance requirements. Resiliency is self-architected by replicating applications and data to one or more zones within the region. You can choose specific availability zones for synchronous replication, providing high availability, or asynchronous replication, providing backup or cost advantage. You can pin resources-for example, virtual machines, managed disks, or standard IP addresses-to a specific zone, allowing for increased resilience by having one or more instances of resources spread across zones.

    With zone-redundant architecture, the Azure platform automatically replicates the resource and data across zones. Microsoft manages the delivery of high availability, since Azure automatically replicates and distributes instances within the region.

    A failure to a zone affects zonal and zone-redundant services differently. In the case of a zone failure, the zonal services in the failed zone become unavailable until the zone has recovered. By architecting your solutions to use replicated VMs in zones, you can protect your applications and data from a zone becoming unavailable-for example, due to a power outage. If one zone is compromised, replicated apps and data are instantly available in another zone.

    Zonal architecture applies to a specific resource, typically an infrastructure as a service (IaaS) resource, like a VM or managed disk, as illustrated.

    Which cloud architecture feature is supported by distributing workloads across different availability zones?

    For example, zonal load balancer, VM, managed disks, virtual machine scale sets.

    In the illustration, each VM and load balancer (LB) are deployed to a specific zone.

    With zone-redundant services, the distribution of the workload is a feature of the service and is handled by Azure. Azure automatically replicates the resource across zones without requiring your intervention. ZRS, for example, replicates the data across three zones so a zone failure does not impact the HA of the data.

    The following illustration is of a zone-redundant load balancer.

    Which cloud architecture feature is supported by distributing workloads across different availability zones?

    For example, zone-redundant load balancer, Azure Application Gateway, Azure Service Bus, virtual private network (VPN), zone-redundant storage, Azure ExpressRoute, Azure Event Hubs, Azure Cosmos DB.

    A few resources, like the load balancer and subnets, support both zonal and zone-redundant deployments. An important consideration in HA is distributing the traffic effectively across resources in the different availability zones. For information on how availability zones apply to the load balancer resources for both zonal and zone-redundant resources, see Standard Load Balancer and availability zones.

    For a list of Azure services that support availability zones, see the availability zones documentation.

    SLA offered by availability zones

    With availability zones, Azure offers industry best 99.99% VM uptime SLA. The full Azure SLA explains the guaranteed availability of Azure as a whole.

    The following diagram illustrates the different levels of HA offered by a single VM, Availability Sets, and availability zones.

    Which cloud architecture feature is supported by distributing workloads across different availability zones?

    Using a VM workload as an example, a single VM has an SLA of 99.9%. This means the VM will be available 99.9% of the time. Within a single datacenter, the use of Availability Sets can increase the level of SLA to 99.95% by protecting a set of VMs, ensuring they will not all be on the same hardware. Within a region, VM workloads can be distributed across availability zones to increase the SLA to 99.99%. For more information, see Availability options for VMs in Azure.

    Every organization has unique requirements, and you should design your applications to best meet your complex business needs. Defining a target SLA will make it possible to evaluate whether the architecture meets your business requirements. Some things to consider include:

    • What are the availability requirements?

    • How much downtime is acceptable?

    • How much will potential downtime cost your business?

    • How much should you invest in making the application highly available?

    • What are the data backup requirements?

    • What are the data replication requirements?

    • What are the monitoring requirements?

    • Does your application have specific latency requirements?

    For additional guidance, see Principles of the reliability pillar.

    Depending on the availability needs of an application, the cost and design complexity will vary. When building for a VM workload, there will be a cost associated with each VM. For example, two VMs per zone across three active zones will have a cost for six VMs. For pricing of VM workloads, see the Azure pricing calculator.

    Next steps

    • Azure Services that support availability zones
    • Regions and availability zones in Azure
    • Create a virtual machine in an availability zone using Azure CLI
    • Create a virtual machine in an availability zone using Azure PowerShell
    • Create a virtual machine in an availability zone using the Azure portal
    • About Azure Edge Zone

    Feedback

    Submit and view feedback for

    Additional resources

    In this article

    Which cloud architecture feature is supported by distributing workload across different availability zones?

    Azure Load Balancer supports availability zones scenarios. You can use Standard Load Balancer to increase availability throughout your scenario by aligning resources with, and distribution across zones.

    When you deploy your application across multiple AWS availability Zones which architectural principle are you implementing?

    One of the core architecture principles of building highly available applications on Amazon Web Services (AWS) is to work with a multi-Availability Zone (AZ) architecture. In the unlikely event an AZ fails, this architecture allows applications to continue running using resources in the other AZs.

    Which cloud architectural concept is supported by a system that can scale in terms of users traffic or data quantity without sacrificing performance?

    Cloud scalability includes the ability to increase workload size within existing infrastructure (hardware, software, etc.) without impacting performance.

    Which of the following best describes an availability zone in the AWS cloud?

    Availability Zones are distinct locations within an AWS Region that are engineered to be isolated from failures in other Availability Zones. They provide inexpensive, low-latency network connectivity to other Availability Zones in the same AWS Region.