Which of the following describes how a plants root system and shoot system work together

Abstract

The roots and shoots of vascular plants may be positionally and developmentally related in various ways. However, botanical teaching and research are strongly influenced by the paradigmatic annual dicotyledon, whose bipolar embryo develops into a plant with root and shoot meeting only at the hypocotyl. In 1930 Goebel criticized this example as a general model for plants, proposing instead the opposed concepts "allorhizy" (referring to plants whose root and shoot are related as above) and "homorhizy" (referring to plants without a bipolar embryo, all of whose roots are shoot-borne, e.g., pteridophytes). Goebel's approach permeates the extensive German morphological literature, but has been virtually ignored in English-language literature. The allorhizy/homorhizy dichotomy has proved heuristic. However, it suggests a correlation between embryo type and mature morphology that does not always hold. Furthermore, it does not take into account the root-borne shoots typical of many plant species. Finally, Goebel's presentation of the terms (which he does not explicitly define) creates ambiguity as to whether they designate structural concepts or the attributes of evolutionary groups. The alternative proposed here is a structural analysis of the possible topological relationships among root and shoot systems. Each structural class is then considered with regard to embryo types, potential for clonal growth and other ecological correlates, and phylogenetic distribution. This approach provides both a test of Goebel's concepts and a basis for further comparative study of whole-plant form. /// Die Wurzeln und Sprossen der vaskulären Pflanzen können stellungsund entwicklungsmässig auf verschiedene Art aufeinander bezogen sein. Gleichwohl sind botanische Lehre und Forschung sehr stark beeinflusst von dem paradigmatischen jährlichen Dikotylen, dessen bipolares Embryo sich in eine Pflanze mit Vereinigung der Wurzel- und Sprossensystemen ausschliesslich an dem Hypokotyl entwickelt. Im Jahre 1930 kritisierte Goebel dieses Beispiel als ein allgemeines Modell für Pflanzen, und schlug statt dessen die gegenseitigen Begriffe "Allorhizie" (was sich auf Pflanzen deren Wurzel und Spross verwandt, wie oben angefürt, bezieht) und "Homorhizie" (was sich auf Pflanzen ohne ein bipolares Embryo, alle dessen Wurzeln sprossbürtig sind, z. B. Pteridophyten, bezieht) vor. Goebels Versuch, sehr verbreitet in der umfassenden deutschen morphologischen Literatur, wurde aber in der englischen Literatur praktisch ignoriert. Die Allorhizie/Homorhizie Dichotomie bewies sich heuristisch. Trotzdem deutet sie eine Wechselbeziehung zwischen Embryotyp und Morphologie der ausgewachsenen Pflanze an, die nicht immer beweisbar ist. Ausserdem nimmt dies nicht die Wurzelsprosse typisch für so viele Pflanzenarten in Betracht. Letztlich, Goebels Darstellung der Begriffe (welche er nicht deutlich definiert) erzeugt Zweideutigkeit ob sie strukturelle Begriffe oder Attribute von evolutionären Gruppen bezeichnen. Die Alternative, die hier vorgeschlagen wird, ist eine strukturelle Analyse der möglichen topologischen Beziehungen zwischen Wurzel- und Sprossensystemen. Jede strukturelle Klasse ist somit erwägt in Hinsicht auf die Embryotypen, Potential für klonales Wachstum und andere ökologischen Merkmale, und phylogenetische Verteilung. Dieser Versuch liefert sowohl eine Untersuchung von Goebels Begriffen als auch eine Basis für weitere vergleichende Studien der Form der ganzen Pflanzen.

Journal Information

For over half a century, Botanical Review has been a leading international journal noted for its in-depth articles on a broad spectrum of botanical fields. Systematics, phytogeography, cladistics, evolution, physiology, ecology, morphology, paleobotany, and anatomy are but a few of the many subjects that have been covered. Botanical Review draws together outstanding scientists in the field, synthesizes the current knowledge about a specific subject, and promotes the advancement of botany by indicating the gaps in our knowledge and providing new outlooks on the topic.

Publisher Information

Springer is one of the leading international scientific publishing companies, publishing over 1,200 journals and more than 3,000 new books annually, covering a wide range of subjects including biomedicine and the life sciences, clinical medicine, physics, engineering, mathematics, computer sciences, and economics.

Rights & Usage

This item is part of a JSTOR Collection.
For terms and use, please refer to our Terms and Conditions
Botanical Review © 1988 New York Botanical Garden Press
Request Permissions

Summary

Read a brief summary of this topic

root, in botany, that part of a vascular plant normally underground. Its primary functions are anchorage of the plant, absorption of water and dissolved minerals and conduction of these to the stem, and storage of reserve foods. The root differs from the stem mainly by lacking leaf scars and buds, having a root cap, and having branches that originate from internal tissue rather than from buds.

Types of roots and root systems

The primary root, or radicle, is the first organ to appear when a seed germinates. It grows downward into the soil, anchoring the seedling. In gymnosperms and dicotyledons (angiosperms with two seed leaves), the radicle becomes a taproot. It grows downward, and secondary roots grow laterally from it to form a taproot system. In some plants, such as carrots and turnips, the taproot also serves as food storage.

Which of the following describes how a plants root system and shoot system work together

Read More on This Topic

angiosperm: Root systems

The roots anchor a plant, absorb water and minerals, and provide a storage area for food. The two basic types of root...

Grasses and other monocotyledons (angiosperms with a single seed leaf) have a fibrous root system, characterized by a mass of roots of about equal diameter. This network of roots does not arise as branches of the primary root but consists of many branching roots that emerge from the base of the stem.

Some roots, called adventitious roots, arise from an organ other than the root—usually a stem, sometimes a leaf. They are especially numerous on underground stems, such as rhizomes, corms, and tubers, and make it possible to vegetatively propagate many plants from stem or leaf cuttings. Certain adventitious roots, known as aerial roots, either pass for some distance through the air before reaching the soil or remain hanging in the air. Some of these, such as those seen in corn (maize), screw pine, and banyan, eventually assist in supporting the plant in the soil. In many epiphytic plants, such as various orchids and Tillandsia species, aerial roots are the primary means of attachment to non-soil surfaces such as other plants and rocks.

A number of other specialized roots exist among vascular plants. Pneumatophores, commonly found in mangrove species that grow in saline mud flats, are lateral roots that grow upward out of the mud and water to function as the site of oxygen intake for the submerged primary root system. The roots of certain parasitic plants are highly modified into haustoria, which embed into the vascular system of the host plant to feed the parasite. The nodular roots of many members of the pea family (Fabaceae) host symbiotic nitrogen-fixing bacteria, and many plant roots also form intricate associations with mycorrhizal soil fungi; a number of non-photosynthetic mycoheterotrophic plants, such as Indian pipe, rely exclusively on these fungi for nutrition.

Morphology and growth

Roots grow in length only from their ends. The very tip of the root is covered by a thimble-shaped root cap, which serves to protect the growing tip as it makes its way through the soil. Just behind the root cap lies the apical meristem, a tissue of actively dividing cells. Some of the cells produced by the apical meristem are added to the root cap, but most of them are added to the region of elongation, which lies just above the meristematic region. It is in the region of elongation that growth in length occurs. Above this elongation zone lies the region of maturation, where the primary tissues of the root mature, completing the process of cell differentiation that actually begins in the upper portion of the meristematic region.

Get a Britannica Premium subscription and gain access to exclusive content. Subscribe Now

The primary tissues of the root are, from outermost to innermost, the epidermis, the cortex, and the vascular cylinder. The epidermis is composed of thin-walled cells and is usually only one cell layer thick. The absorption of water and dissolved minerals occurs through the epidermis, a process greatly enhanced in most land plants by the presence of root hairs—slender, tubular extensions of the epidermal cell wall that are found only in the region of maturation. The absorption of water is chiefly via osmosis, which occurs because (1) water is present in higher concentrations in the soil than within the epidermal cells (where it contains salts, sugars, and other dissolved organic products) and (2) the membrane of the epidermal cells is permeable to water but not to many of the substances dissolved in the internal fluid. These conditions create an osmotic gradient, whereby water flows into the epidermal cells. This flow exerts a force, called root pressure, that helps drive the water through the roots. Root pressure is partially responsible for the rise of water in plants, but it cannot alone account for the transport of water to the top of tall trees.

The cortex conducts water and dissolved minerals across the root from the epidermis to the vascular cylinder, whence it is transported to the rest of the plant. The cortex also stores food transported downward from the leaves through the vascular tissues. The innermost layer of the cortex usually consists of a tightly packed layer of cells, called the endodermis, which regulates the flow of materials between the cortex and the vascular tissues.

The vascular cylinder is interior to the endodermis and is surrounded by the pericycle, a layer of cells that gives rise to branch roots. The conductive tissues of the vascular cylinder are usually arranged in a star-shaped pattern. The xylem tissue, which carries water and dissolved minerals, comprises the core of the star; the phloem tissue, which carries food, is located in small groups between the points of the star.

The older roots of woody plants form secondary tissues, which lead to an increase in girth. These secondary tissues are produced by the vascular cambium and the cork cambium. The former arises from meristematic cells that lie between the primary xylem and phloem. As it develops, the vascular cambium forms a ring around the primary vascular cylinder. Cell divisions in the vascular cambium produce secondary xylem (wood) to the inside of the ring and secondary phloem to the outside. The growth of these secondary vascular tissues pushes the pericycle outward and splits the cortex and epidermis. The pericycle becomes the cork cambium, producing cork cells (outer bark) that replace the cortex and epidermis.

The Editors of Encyclopaedia Britannica

This article was most recently revised and updated by Melissa Petruzzello.

How a plant's root system and shoot system work together?

The shoot system consists stems, leaves, and the reproductive parts of the plant (flowers and fruits). The shoot system generally grows above ground, where it absorbs the light needed for photosynthesis. The root system, which supports the plants and absorbs water and minerals, is usually underground.

How do the root and shoot systems of plants work to allow reproduction to occur?

Copper that is absorbed by the roots is transported to reproductive tissue by the shoot system. The shoot system stores copper for later use by the roots and the reproductive structures. The shoot system transports copper to the roots after it is taken in through stomata in the leaves.

How do the plant systems work together to make the movement of the liquid possible?

How do the plant systems work together to make this movement of liquid possible? F The roots absorb water and minerals and move them up to the stem, while the stem moves food produced in the leaves down to the roots in tiny tubes.

Which of the following best describes the interaction that occurs between a plant's reproductive parts during reproduction?

Which of the following best describes the interaction that occurs between a plant's reproductive parts during self-fertilization? Pollen is released from the anther and is transferred to the stigma.