Which of the following observations best supports the hypothesis that CDK5 negatively regulates

  • View PDF

Volume 277, Issue 1, 4 January 2002, Pages 528-534

https://doi.org/10.1074/jbc.M109324200Get rights and content

1. Malumbres M., Cyclin-dependent kinases. Genome Biol. 15, 122 (2014). [PMC free article] [PubMed] [Google Scholar]

2. Lim S., Kaldis P., Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development 140, 3079–3093 (2013). [PubMed] [Google Scholar]

3. Malumbres M., Barbacid M., Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009). [PubMed] [Google Scholar]

4. Sherr C. J., Beach D., Shapiro G. I., Targeting CDK4 and CDK6: From discovery to therapy. Cancer Discov. 6, 353–367 (2016) [PMC free article] [PubMed] [Google Scholar]

5. Otto T., Sicinski P., Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 17, 93–115 (2017). [PMC free article] [PubMed] [Google Scholar]

6. Dhavan R., Tsai L. H., A decade of CDK5. Nat. Rev. Mol. Cell Biol. 2, 749–759 (2001). [PubMed] [Google Scholar]

7. Tsai L. H., Takahashi T., Caviness V. S. Jr, Harlow E., Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development 119, 1029–1040 (1993). [PubMed] [Google Scholar]

8. Kawauchi T., Cdk5 regulates multiple cellular events in neural development, function and disease. Dev. Growth Differ. 56, 335–348 (2014). [PubMed] [Google Scholar]

9. Liu J. L., et al., Expression of CDK5/p35 in resected patients with non-small cell lung cancer: Relation to prognosis. Med. Oncol. 28, 673–678 (2011). [PubMed] [Google Scholar]

10. Zhang R., et al., Clinical role and biological function of CDK5 in hepatocellular carcinoma: A study based on immunohistochemistry, RNA-seq and in vitro investigation. Oncotarget 8, 108333–108354 (2017). [PMC free article] [PubMed] [Google Scholar]

11. Eggers J. P., et al., Cyclin-dependent kinase 5 is amplified and overexpressed in pancreatic cancer and activated by mutant K-Ras. Clin. Cancer Res. 17, 6140–6150 (2011). [PMC free article] [PubMed] [Google Scholar]

12. Lockwood W. W., et al., DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers. Oncogene 27, 4615–4624 (2008). [PMC free article] [PubMed] [Google Scholar]

13. Wei K., et al., An immunohistochemical study of cyclin-dependent kinase 5 (CDK5) expression in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC): A possible prognostic biomarker. World J. Surg. Oncol. 14, 34 (2016). [PMC free article] [PubMed] [Google Scholar]

14. Pozo K., Bibb J. A., The emerging role of Cdk5 in cancer. Trends Cancer 2, 606–618 (2016). [PMC free article] [PubMed] [Google Scholar]

15. Dankort D., et al., Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552 (2009). [PMC free article] [PubMed] [Google Scholar]

16. Damsky W. E., et al., β-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 20, 741–754 (2011). [PMC free article] [PubMed] [Google Scholar]

17. Chin L., The genetics of malignant melanoma: Lessons from mouse and man. Nat. Rev. Cancer 3, 559–570 (2003). [PubMed] [Google Scholar]

18. Gray-Schopfer V. C., da Rocha Dias S., Marais R., The role of B-RAF in melanoma. Cancer Metastasis Rev. 24, 165–183 (2005). [PubMed] [Google Scholar]

19. Hodis E., et al., A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012). [PMC free article] [PubMed] [Google Scholar]

20. Samuels B. A., et al., Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 56, 823–837 (2007). [PMC free article] [PubMed] [Google Scholar]

21. Cochran A. J., Wen D. R., S-100 protein as a marker for melanocytic and other tumours. Pathology 17, 340–345 (1985). [PubMed] [Google Scholar]

22. Eberting C. L., Shrayer D. P., Butmarc J., Falanga V., Histologic progression of B16 F10 metastatic melanoma in C57BL/6 mice over a six week time period: Distant metastases before local growth. J. Dermatol. 31, 299–304 (2004). [PubMed] [Google Scholar]

23. Ferretti R., Bhutkar A., McNamara M. C., Lees J. A., BMI1 induces an invasive signature in melanoma that promotes metastasis and chemoresistance. Genes Dev. 30, 18–33 (2016). [PMC free article] [PubMed] [Google Scholar]

24. Dorand R. D., et al., Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science 353, 399–403 (2016). [PMC free article] [PubMed] [Google Scholar]

25. Bishop A. C., et al., A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000). [PubMed] [Google Scholar]

26. Blethrow J. D., Glavy J. S., Morgan D. O., Shokat K. M., Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc. Natl. Acad. Sci. U.S.A. 105, 1442–1447 (2008). [PMC free article] [PubMed] [Google Scholar]

27. Shah K., Liu Y., Deirmengian C., Shokat K. M., Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc. Natl. Acad. Sci. U.S.A. 94, 3565–3570 (1997). [PMC free article] [PubMed] [Google Scholar]

28. Witucki L. A., et al., Mutant tyrosine kinases with unnatural nucleotide specificity retain the structure and phospho-acceptor specificity of the wild-type enzyme. Chem. Biol. 9, 25–33 (2002). [PubMed] [Google Scholar]

29. Bishop A. C., et al., Design of allele-specific inhibitors to probe protein kinase signaling. Curr. Biol. 8, 257–266 (1998). [PubMed] [Google Scholar]

30. Mehlen P., Puisieux A., Metastasis: A question of life or death. Nat. Rev. Cancer 6, 449–458 (2006). [PubMed] [Google Scholar]

31. McAlister G. C., et al., Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal. Chem. 84, 7469–7478 (2012). [PMC free article] [PubMed] [Google Scholar]

32. Wühr M., et al., Accurate multiplexed proteomics at the MS2 level using the complement reporter ion cluster. Anal. Chem. 84, 9214–9221 (2012). [PMC free article] [PubMed] [Google Scholar]

33. Satelli A., Li S., Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci. 68, 3033–3046 (2011). [PMC free article] [PubMed] [Google Scholar]

34. Wang W., et al., Vimentin is a crucial target for anti-metastasis therapy of nasopharyngeal carcinoma. Mol. Cell. Biochem. 438, 47–57 (2018). [PubMed] [Google Scholar]

35. Rodríguez M. I., et al., PARP-1 regulates metastatic melanoma through modulation of vimentin-induced malignant transformation. PLoS Genet. 9, e1003531 (2013). [PMC free article] [PubMed] [Google Scholar]

36. Ivaska J., Pallari H. M., Nevo J., Eriksson J. E., Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 313, 2050–2062 (2007). [PubMed] [Google Scholar]

37. Chou Y. H., Ngai K. L., Goldman R., The regulation of intermediate filament reorganization in mitosis. p34cdc2 phosphorylates vimentin at a unique N-terminal site. J. Biol. Chem. 266, 7325–7328 (1991). [PubMed] [Google Scholar]

38. Chou Y. H., Rosevear E., Goldman R. D., Phosphorylation and disassembly of intermediate filaments in mitotic cells. Proc. Natl. Acad. Sci. U.S.A. 86, 1885–1889 (1989). [PMC free article] [PubMed] [Google Scholar]

39. Chou Y. H., Bischoff J. R., Beach D., Goldman R. D., Intermediate filament reorganization during mitosis is mediated by p34cdc2 phosphorylation of vimentin. Cell 62, 1063–1071 (1990). [PubMed] [Google Scholar]

40. Sihag R. K., Inagaki M., Yamaguchi T., Shea T. B., Pant H. C., Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp. Cell Res. 313, 2098–2109 (2007). [PMC free article] [PubMed] [Google Scholar]

41. Inagaki M., Nishi Y., Nishizawa K., Matsuyama M., Sato C., Site-specific phosphorylation induces disassembly of vimentin filaments in vitro. Nature 328, 649–652 (1987). [PubMed] [Google Scholar]

42. Inagaki M., et al., Intermediate filament reconstitution in vitro. The role of phosphorylation on the assembly-disassembly of desmin. J. Biol. Chem. 263, 5970–5978 (1988). [PubMed] [Google Scholar]

43. Eriksson J. E., et al., Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J. Cell Sci. 117, 919–932 (2004). [PubMed] [Google Scholar]

44. Hertz N. T., et al., Chemical genetic approach for kinase-substrate mapping by covalent capture of thiophosphopeptides and analysis by mass spectrometry. Curr. Protoc. Chem. Biol. 2, 15–36 (2010). [PMC free article] [PubMed] [Google Scholar]

45. Cogli L., Progida C., Bramato R., Bucci C., Vimentin phosphorylation and assembly are regulated by the small GTPase Rab7a. Biochim. Biophys. Acta 1833, 1283–1293 (2013). [PMC free article] [PubMed] [Google Scholar]

46. Patrick G. N., Zhou P., Kwon Y. T., Howley P. M., Tsai L. H., p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J. Biol. Chem. 273, 24057–24064 (1998). [PubMed] [Google Scholar]

47. Meijer L., et al., Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243, 527–536 (1997). [PubMed] [Google Scholar]

48. Krepler C., et al., A comprehensive patient-derived xenograft collection representing the heterogeneity of melanoma. Cell Rep. 21, 1953–1967 (2017). [PMC free article] [PubMed] [Google Scholar]

49. Garman B., et al., Genetic and genomic characterization of 462 melanoma patient-derived xenografts, tumor biopsies, and cell lines. Cell Rep. 21, 1936–1952 (2017). [PMC free article] [PubMed] [Google Scholar]

50. Liang Q., et al., CDK5 is essential for TGF-β1-induced epithelial-mesenchymal transition and breast cancer progression. Sci. Rep. 3, 2932 (2013). [PMC free article] [PubMed] [Google Scholar]

51. Strock C. J., et al., Cyclin-dependent kinase 5 activity controls cell motility and metastatic potential of prostate cancer cells. Cancer Res. 66, 7509–7515 (2006). [PubMed] [Google Scholar]

52. Pozo K., et al., The role of Cdk5 in neuroendocrine thyroid cancer. Cancer Cell 24, 499–511 (2013). [PMC free article] [PubMed] [Google Scholar]

53. Pozo K., et al., Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis. Oncotarget 6, 12080–12093 (2015). [PMC free article] [PubMed] [Google Scholar]

54. Lin H., Chen M. C., Chiu C. Y., Song Y. M., Lin S. Y., Cdk5 regulates STAT3 activation and cell proliferation in medullary thyroid carcinoma cells. J. Biol. Chem. 282, 2776–2784 (2007). [PubMed] [Google Scholar]

55. Sun Y. Q., et al., Low expression of CDK5 and p27 are associated with poor prognosis in patients with gastric cancer. J. Cancer 7, 1049–1056 (2016). [PMC free article] [PubMed] [Google Scholar]

56. Ajay A. K., et al., Cdk5 phosphorylates non-genotoxically overexpressed p53 following inhibition of PP2A to induce cell cycle arrest/apoptosis and inhibits tumor progression. Mol. Cancer 9, 204 (2010). [PMC free article] [PubMed] [Google Scholar]

57. Cao L., et al., Cyclin-dependent kinase 5 decreases in gastric cancer and its nuclear accumulation suppresses gastric tumorigenesis. Clin. Cancer Res. 21, 1419–1428 (2015). [PubMed] [Google Scholar]

58. Feldmann G., et al., Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression through the suppression of Ras-Ral signaling. Cancer Res. 70, 4460–4469 (2010). [PMC free article] [PubMed] [Google Scholar]

59. Huang C., et al., Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nat. Cell Biol. 11, 624–630 (2009). [PMC free article] [PubMed] [Google Scholar]

60. Liu R., et al., Cdk5-mediated regulation of the PIKE-A-Akt pathway and glioblastoma cell invasion. Proc. Natl. Acad. Sci. U.S.A. 105, 7570–7575 (2008). [PMC free article] [PubMed] [Google Scholar]

61. Bisht S., et al., Cyclin-dependent kinase 5 (CDK5) controls melanoma cell motility, invasiveness, and metastatic spread-identification of a promising novel therapeutic target. Transl. Oncol. 8, 295–307 (2015). [PMC free article] [PubMed] [Google Scholar]

62. Li L., et al., Cdk5-mediated phosphorylation regulates phosphatidylinositol 4-phosphate 5-kinase type I gamma 90 activity and cell invasion. FASEB J. 33, 631–642 (2019). [PMC free article] [PubMed] [Google Scholar]

63. Chi T. F., Horbach T., Götz C., Kietzmann T., Dimova E. Y., Cyclin-dependent kinase 5 (CDK5)-mediated phosphorylation of upstream stimulatory factor 2 (USF2) contributes to carcinogenesis. Cancers 11, E523 (2019). [PMC free article] [PubMed] [Google Scholar]

64. Krishnan H., et al., PKA and CDK5 can phosphorylate specific serines on the intracellular domain of podoplanin (PDPN) to inhibit cell motility. Exp. Cell Res. 335, 115–122 (2015). [PMC free article] [PubMed] [Google Scholar]

65. Tripathi B. K., Lowy D. R., Zelenka P. S., The Cdk5 activator P39 specifically links muskelin to myosin II and regulates stress fiber formation and actin organization in lens. Exp. Cell Res. 330, 186–198 (2015). [PMC free article] [PubMed] [Google Scholar]

66. Tripathi B. K., et al., CDK5 is a major regulator of the tumor suppressor DLC1. J. Cell Biol. 207, 627–642 (2014). [PMC free article] [PubMed] [Google Scholar]

67. Jin X., et al., CDK5/FBW7-dependent ubiquitination and degradation of EZH2 inhibits pancreatic cancer cell migration and invasion. J. Biol. Chem. 292, 6269–6280 (2017). [PMC free article] [PubMed] [Google Scholar]

68. Lu J., et al., CDK5 suppresses the metastasis of gastric cancer cells by interacting with and regulating PP2A. Oncol. Rep. 41, 779–788 (2019). [PMC free article] [PubMed] [Google Scholar]

69. Bedrosian I., et al., Incidence of sentinel node metastasis in patients with thin primary melanoma (< or = 1 mm) with vertical growth phase. Ann. Surg. Oncol. 7, 262–267 (2000). [PubMed] [Google Scholar]

70. Corrie P., Hategan M., Fife K., Parkinson C., Management of melanoma. Br. Med. Bull. 111, 149–162 (2014). [PubMed] [Google Scholar]

71. Knudsen E. S., Pruitt S. C., Hershberger P. A., Witkiewicz A. K., Goodrich D. W., Cell cycle and beyond: Exploiting new RB1 controlled mechanisms for cancer therapy. Trends Cancer 5, 308–324 (2019). [PMC free article] [PubMed] [Google Scholar]

72. Lavoie J. N., L’Allemain G., Brunet A., Müller R., Pouysségur J., Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 271, 20608–20616 (1996). [PubMed] [Google Scholar]

73. Albanese C., et al., Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem. 270, 23589–23597 (1995). [PubMed] [Google Scholar]

74. Lee K. Y., Liu L., Jin Y., Fu S. B., Rosales J. L., Cdk5 mediates vimentin Ser56 phosphorylation during GTP-induced secretion by neutrophils. J. Cell. Physiol. 227, 739–750 (2012). [PMC free article] [PubMed] [Google Scholar]

75. Nieminen M., et al., Vimentin function in lymphocyte adhesion and transcellular migration. Nat. Cell Biol. 8, 156–162 (2006). [PubMed] [Google Scholar]

76. Ohshima T., et al., Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl. Acad. Sci. U.S.A. 93, 11173–11178 (1996). [PMC free article] [PubMed] [Google Scholar]

77. Ko J., et al., p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J. Neurosci. 21, 6758–6771 (2001). [PMC free article] [PubMed] [Google Scholar]

78. Hawasli A. H., et al., Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat. Neurosci. 10, 880–886 (2007). [PMC free article] [PubMed] [Google Scholar]

79. Underwood W., Anthony R., Gwaltney-Brant S., Poison A. S. P. C. A., Meyer R., AVMA Guidelines for the Euthanasia of Animals (American Veterinary Medical Association, IL, 2013). [Google Scholar]


Page 2

Analyses of mouse melanoma tumors. (A) Schematic representation of the crosses to generate mice bearing CDK5+/+/Tyr-Cre/BRAFV600E/+/PTENΔ/Δ and CDK5Δ/Δ/Tyr-Cre/BRAFV600E/+/PTENΔ/Δ tumors. (B) Immunoblotting of tumor lysates for CDK5 (Upper) and p35 (Lower). p25 denotes proteolytically cleaved p35 species. Adjacent normal skin and brain (the latter as a positive control) were also analyzed. Immunoblotting for HSP90 and GAPDH was used as a loading control (n = 2). (C) Immunohistochemistry (IHC) staining of tumor sections with an anti-CDK5 antibody. (Scale bars, 50 μm.) (D) Immunoblotting of tumor lysates for CDK5 and HSP90 (loading control) (n = 3). (E) Examples of skin tumors (denoted by red contours) arising in CDK5+/+ and CDK5F/F mice. (F) Quantification of the number of tumors per mouse and total tumor weight per mouse in CDK5+/+ and CDK5F/F animals (n = 5 mice/group). ns, not significant; unpaired t test. (G) IHC staining of tumors for BrdU (Upper), or Ki-67 (Lower) to mark proliferating cells. (H) Quantification of the fractions of BrdU- or Ki-67–positive cells in CDK5+/+ and CDK5Δ/Δ tumors (n = 5 mice/group). Shown are mean values ± SD (Right, unpaired t test; Left, unpaired t test with Welch’s correction).

Click on the image to see a larger version.

Which of the following best explains why GFP * might exhibit a bright green fluorescence in alkaline conditions but not in acidic conditions?

Which of the following best explains why GFP might exhibit a bright green fluorescence in alkaline conditions but not in acidic conditiotis? (A) Addition of an H 'to GFP at acidic pH changes the shape of the protein. Preventing fluorescence.

Which of the following most likely describes how the interaction between bears and salmon influences nitrogen dynamics in the environment?

Which of the following most likely describes how the interaction between bears and salmon influences nitrogen dynamics in the enviorment? When bears consume salad they leave parts of the carcass on the ground which decompose, releasing nitrogen in the environment.

Which of the following is the best prediction of how the new disease will affect the two populations?

Which of the following is the best prediction of how the new disease will affect the two populations? (C.) The smaller population will be more affected than will the larger population, because the smaller population has less genetic variation than the larger population has.

Which of the following best predicts the consequences of the introduction of C Taxifolia to the California Cost?

Which of the folding best predicts the consequences of the introduction of C. taxifolia to the California coast? Without natural herbivores or competitors C. texifolia will grow rapidly and crowd out native species of producers.